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Abstract

What are the macroeconomic implications of informational frictions in a quantitative business
cycle model? We develop a general solution method that allows enriching a standard medium-
scale DSGE model with dispersed information and estimating using Bayesian techniques with
comprehensive macroeconomic and expectation data. We draw important conclusions regard-
ing the role information frictions play in business cycles. First, the degree of informational
friction varies significantly across shocks and indicates important departures from complete
information. Second, information frictions cannot substitute standard frictions to generate
inertia in macroeconomic variables. When disciplining our model with expectational data,
standard frictions such as habits and investment costs increase substantially despite the per-
vasive informational frictions. Third, simulated data from the model can match standard
empirical measures of informational frictions when using data on forecast revisions in the
estimation. Fourth, we use our model to assess whether those empirical estimates are reli-
able measures of informational frictions. We find that these measures are more sensitive to
information frictions than to standard frictions. Finally, compared with its full-information
counterpart, our model generates a weaker recession after inflationary price markup shocks
and stronger real effects but a less inflationary response to monetary shocks.
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1 Introduction

Modern macroeconomics rests upon the framework of full-information rational expectations (FIRE).
Despite the considerable achievements of the rational expectations paradigm, it faces two impor-
tant limitations. First, it relies on very persistent exogenous shocks and various frictions, such as
habit formation in consumption and adjustment cost in investment, to replicate the slow adjust-
ment of aggregate variables. These frictions are often referred to as “ad hoc” (Chari et al. (2009);
Angeletos and Huo (2021)), because they lack robust micro-foundation and empirical evidence,
particularly for the values typically used in macroeconomic models. Second, FIRE models are
inconsistent with the substantial heterogeneity and underreaction in expectations about macroe-
conomic conditions observed in the survey data (Mankiw et al. (2004); Coibion and Gorodnichenko
(2015); Coibion et al. (2018)).

On another front, an emerging body of literature, pioneered by Mankiw and Reis (2002), Wood-
ford (2002) and Sims (2003), argues that informational frictions can address the aforementioned
shortcomings in FIRE models. This is because the gradual learning process induced by infor-
mational imperfections generates a more realistic expectation formation process and qualitatively
reproduces the slow response of aggregates to shocks observed in the data.

Despite the promising theoretical and empirical results suggesting the role of informational fric-
tions in replicating key empirical regularities of the macroeconomic and expectation variables, there
is still scarce work evaluating rigorously the quantitative performance of models with information
imperfections. This is because existing methods to solve DSGE models featuring informational
imperfections still have limited applicability, especially when linking the model to the data. The
challenge faced by this strand of the literature lies in the complexity of solving DSGE models
when we relax the assumption of full information. Under incomplete information, agents must
form an infinite regress of expectations, as first pointed out by Townsend (1983). Then, state
representations of DSGE models with such informational structure become infinite-dimensional.

The current stance of the literature leaves several unanswered questions. How does the in-
troduction of information frictions change the estimates for standard frictions in macroeconomic
model? What is the best expectation data to use for estimating macroeconomic models with or
without informational frictions? Can the model reproduce key empirical measures of departures
from FIRE? And how do standard and informational frictions interact to shape these deviations?
How does the introduction of informational frictions change our understanding of the drivers of
business cycles and the propagation of shocks?

To answer these questions, we augment a medium-scale DSGE model along the lines of Chris-
tiano et al. (2005) and Smets and Wouters (2007) with an informational friction in the form of
dispersed information about the state of the economy. This form of informational friction is stan-
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dard in the literature1 and dates back to Lucas (1972)’s seminal island model. Importantly, it has
proven to be consistent with the empirical evidence on the underreaction of average expectations
to aggregate shocks.

We develop a novel method to solve and estimate DSGE models with dispersed and exogenous
information. The method bridges Uhlig’s (2001) undermined coefficient method for full-information
models with the solution methods from Nimark (2008) and Melosi (2017) for dispersed information
models that truncates hierarchy of beliefs to a finite order. Our method improves upon previous so-
lutions by allowing for the inclusion of endogenous state variables into the system of log-linearized
equilibrium conditions, which allows using medium and large-scale quantitative models. The so-
lution is sufficiently fast to perform Bayesian estimation with standard techniques.

This differs from the previous literature on quantitative models with informational frictions,
which was limited to the estimation of small-scale DSGE models using solely macroeconomic data
or including little information from survey expectation data.

Equipped with this new toolbox for working with this class of models, we estimate the model
featuring both standard frictions and incomplete information (the “DI model) and compared it
with its commonly used full-information counterpart (the “FI” model). Both models are estimated
using Bayesian techniques with two different datasets: one including only U.S. macroeconomic
data, as common practice in the literature, and another augmented with expectation data on
forecast revisions for real output, consumption, investment, inflation and nominal rate from the
U.S. Survey of Professional Forecasters (SPF).

Several interesting results arise from our estimation exercise. When we include expectation data
in the DI model estimation, we find that parameter estimates for both models change substantially.
Under the complete dataset, the estimated persistence of several shocks declines substantially, in
particular for the monetary, investment and preference shocks. Moreover, habit formation and the
adjustment cost in investment rise significantly, and the Taylor-rule response to inflation and past
interest rates both increase.

This increase in the level of “ad hoc” parameters goes in contrast with what one would expect
from the theoretical literature on information frictions, which suggests that incomplete information
can be an alternative device to generate the inertia in macroeconomic variables consistent with the
data. Our results suggest that both standard and information frictions are important in explaining
the macroeconomic and expectation data.

In the DI model, including data on forecast revisions increases both the estimated levels of
information frictions and the variances of the shocks. Interestingly, there is a considerable de-
crease in the variance of measurement errors for expectational variables, a first indication that
the DI model provides a better explanation for expectation data, which we confirm further when

1See for instance Woodford (2002), Nimark (2008), Angeletos and La’O (2013), Melosi (2017), among others.
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comparing the marginal likelihoods of the FI and DI models.
Introducing information frictions also increases the variances of shocks for both datasets, with

a more pronounced effect observed in the complete dataset. The higher shock volatility is offset by
the impact of information frictions, resulting in less pronounced responses. Overall, the estimates
derived from the complete dataset exhibit stronger standard frictions, including habits, adjustment
costs, price and wage indexation, and robust informational frictions across all shocks. Monetary
shocks display comparatively smaller information frictions, although they remain distant from the
full information benchmark.

In our view, the estimation exercise highlights two important lessons. First, our framework
suggests that both standard and informational frictions are essential to fit the macroeconomic and
expectation data. Second, parameter estimates, even for the model with complete information,
are not robust to the inclusion of expectation data.

We then investigate if the estimated DI model is able to replicate unmatched moments of
the expectation data. Specifically, using the approach by Coibion and Gorodnichenko (2015)
(CG henceforth), we estimate empirical Kalman gains, which measure the degree to which agents
incorporate new information into their forecasts. These estimates represent the bite of information
frictions. In general, Kalman gain estimates from the model are very close to their empirical
counterparts.

We also evaluate what are the more informative variables associated with the expectation to
use to discipline macroeconomic models with incomplete information. Our model suggests that
there strong link between forecast revisions and informational frictions. This is the main reason
why we use data on forecast revisions. However, the few papers that use expectation data usually
use data on forecasts (Del Negro and Eusepi; 2011; Del Negro et al.; 2015; Melosi; 2017).

We confirm this premise by re-estimating the DI model using two alternative datasets: i) one
including data on forecasts in place of revision forecasts, and ii) another including data on forecast
errors. Then, we evaluate which model can replicate best the empirical Kalman gains. Our findings
suggest that overall, the model using data on forecast revisions has estimates that are closer to
the empirical evidence.

We also shed some light on the reliability of empirical Kalman gains as measures of informational
frictions. As discussed by Angeletos and Huo (2021) and Angeletos et al. (2020), Kalman gains
are determined by the interaction of informational frictions with the other frictions in the model.

In our model, this is even more prominent as we have various sources of shocks and frictions.
To quantitatively evaluate this point, we vary the level of each friction to see which of them is
most important to explain a particular empirical Kalman gain. In this sense, our exercise extends
the analytical results in Angeletos and Huo (2021).

We have two important findings that reinforce the relevance of such measures. First, empirical
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Kalman gains are remarkably stable when varying real and nominal frictions, with some notable
and interesting exceptions. Consumption Kalman gain is highly sensitive to habits, inflation
Kalman gain is sensitive to price indexation and nominal rate Kalman gain is sensitive to monetary
rule smoothing.

Second, empirical Kalman gains are very sensitive to information friction parameters. Inter-
estingly, information friction for each shock does not affect all empirical Kalman gains computed
from the model. For instance, the information friction on the preference shock plays a major role
for Kalman gains of consumption and output only. Also intuitively, the Kalman gain of interest is
mostly driven by imperfect information about monetary policy shocks.

Our last contribution is to study what are the implications of the estimated model with dis-
persed information to our understanding of the drivers of business cycles and the propagation of
aggregate shocks. Performing a forecast error variance decomposition (FEVD) exercise, we find
that investment shocks have a more prominent role in explaining output in the DI compared to
its full-information counterpart, in a similar vein with the results by Auclert et al. (2020), whose
departure from FIRE in a heterogenous-agent New Keynesian framework.

Finally, we compare impulse response functions (IRFs) to shocks of the DI and FI models. The
baseline FI and DI models generate similar impulse responses of macroeconomic variables, since
they are both estimated to reproduce these moments of the data. However, only the DI model can
reproduce the slow adjustment of expectations to shocks. Notably, the introduction of information
frictions is key to reproduce the impulse responses to an investment shock. Those IRFs exhibit
a higher response on impact and lower persistence when informational frictions are turned off,
showing that dispersed information is key to dampen the impact of the shock and generate a slow
adjustment of macroeconomic aggregates to it.

Outline. The remainder of this paper is organized as follows. Section 1.1 reviews the related
literature. Section 2 presents the details of the model and its equilibrium relations. Section 3
explains the new solution method we developed. Section 4 details the dataset used, the estimation
procedure, and its results. Section 5. Section 6 performs different quantitative exercises to evaluate
the ability of the model with DI but without some of the reduced-form frictions to explain the
data compared to the standard full-information model with all frictions. Section 7 concludes.

1.1 Related literature

This paper is related to several strands of the macroeconomic literature.
First, our results compare directly with those of the extensive literature on quantitative business

cycle models, built upon the full-information paradigm, in which Christiano et al. (2005) and Smets
and Wouters (2007) are the most prominent examples. Specifically, the only crucial difference
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between our model and the ones in the aforementioned papers is the informational structure.
Moreover, the key exercise of our paper is to confront the fit of a model featuring DI but without
some of the reduced-form frictions with the mainstream full-information model. We also provide
an assessment of which expectation data to use when accounting for informational frictions.

Second, our paper relates to a theoretical literature that suggests that informational frictions
can be an alternative - and with better microfoundations - a device to generate inertia in macroe-
conomic models. Our model lies within the class of noisy information starting with Woodford
(2002) both learning about fundamentals and even stronger sluggishly adjustment of higher-order
expectations. Angeletos and La’O (2010) and Angeletos and La’O (2013) embed a calibrated RBC
model with this information setup to explain business cycles. However, they do not include a full
set of other competing frictions to explain the inertia in the data.

Our paper integrates the growing but still small quantitative literature estimating incomplete
information models. Melosi (2014) estimates a NK model in which firms have DI about the money
growth and technological shocks. The author shows that the model with DI fits the data better
than a model with sticky prices a la Calvo (1983) with indexation. Also, Melosi (2017) estimates
a Calvo-like sticky price model with DI about monetary, technological, demand shocks. He finds
that there is a signalling channel of monetary policy in the US and that the model fits better the
data than a New Keynesian model with habits in consumption and indexation.

Third, our paper relates to alternative methods for solving dispersed information models in gen-
eral settings. Our setting extends methods from Nimark (2008) and Melosi (2017) that truncates
the hierarchy of beliefs to a finite order to avoid the infinite regress of higher-order expectations.
There are other alternatives using frequency domain techniques. The more prominent alternative
is due to Huo and Takayama (2023) that use a combination of the Wiener-Hopf prediction for-
mula and the Kalman filter that allows a tractable finite-state representation for the equilibrium.
They apply their model to a small dynamic beauty context model and a HANK-type model with
incomplete information.

Huo and Takayama (2022) uses the same method to solve an RBC model with TFP and
confidence shocks as in Angeletos and La’O (2013). Their model does not include standard nominal
and ‘ad hoc’ frictions but does a good job of matching main business cycle moments and conditional
responses identified in empirical VAR.

While our solution method relies on an approximation, we solve a medium-scale DSGE model
fast enough to pursue a full Bayesian estimation. As shown by Nimark (2017), this approximate
solution is accurate for the class of models that the importance of the order of expectation decreases
with the order, which our model satisfies.

Relatedly, Angeletos et al. (2018) adopt a different approach to solve a DSGE with imperfect
and dispersed information. They propose a model with heterogeneous prior and using the lim-
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iting case of vanishing variance of private signals. In that way, they can solve and estimate the
model by shutting down the learning process and representing the expectations hierarchy into a
low-dimensional state variable. The advantage of this method is that it has virtually the same
computational burden as the full-information model. The drawbacks are that the dispersion in
expectations is shut down and apply only to “confidence shocks” that do not change fundamentals,
but affect expectations.

Our application evaluates the relevance of the informational frictions, which are shut down in
their method. For a fair comparison with the full information benchmark, we do not compare with
confidence or noise shocks that provide an additional source of explanation for business cycles.

Chahrour and Ulbricht (2023) uses a business cycle accounting approach for quantifying the im-
portance of information as a source of business cycle fluctuations regardless informational structure
and provide conditions for confidence shocks playing a major role.

We also relate to a quantitative literature signal extraction into DSGE models with common in-
formation. Lippi and Neri (2007) estimate a small-scale DSGE model with imperfect information,
discretionary monetary policy and indicator variables with potential information role for stabiliza-
tion policy. Collard et al. (2009) estimate a standard New Keynesian (NK) model under three
alternative forms of imperfect information: confusion between temporary and persistent shocks,
unobserved variation in the inflation target of the central bank, and persistent mis-perceptions
about the state of the economy. The authors argue that the inclusion of imperfect information im-
proves the fit of the traditional NK model according to the marginal likelihood criterion. Neri and
Ropele (2011) contribute to this literature by estimating a NK model with imperfect information
for the euro area using real-time data. Thus, they depart from the prior works mentioned above
that use only ex-post revised macroeconomic data.

Finally, our paper also is related the literature on evidence of information frictiosn in surveys
on expectation Coibion and Gorodnichenko (2012, 2015); Bordalo et al. (2020); Angeletos et al.
(2020). We contribute to this literature in two aspects. First, we provide an similar empirical but
more direct strategy to estimate the degree of informational frictions from data. Second, and more
importantly, we evaluate whether the measure proposed by CG’s empirical strategy can really
uncover the informational frictions.

2 Model

The model is a standard medium-scale DSGE model along the lines of Christiano et al. (2005)
and Smets and Wouters (2007). It features sticky prices and wages, variable capital utilization,
fixed cost in intermediate production, and five frictions that generate endogenous persistence in
the model: (i) habit formation in consumption, (ii) adjustment cost in investment, (iii, iv) partial
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indexation of prices and wages to past inflation, and (v) smoothing in the monetary policy rule.
In the baseline specification of the DI model, we shut off three frictions that induce inertia in the
model, namely: habit persistence in consumption and indexation of prices and wages to lagged
inflation. We discuss this choice in the results section. That said, in the following description of
the model, we derive it with all the frictions, including the informational imperfection, and later
we detail the frictions that will be turned off.

The stochastic dynamics is driven by seven orthogonal exogenous shocks. The model includes
total factor and investment-specific productivity shocks, a preference shock, wage and price mark-
up shocks, and government expenditure and monetary policy shocks.

The innovation of our work is the introduction of dispersed information (DI) to this environ-
ment. Specifically, households and firms do not observe perfectly the shocks hitting the economy.
Instead, they receive noisy idiosyncratic signals about them.

Timing

Time is discrete and each period contains two stages. In the first stage, shocks and signals are
realized, intermediate goods firms choose optimal prices, and households choose consumption, in-
vestment, installed capital, and its utilization level, and set optimal wages, based on information
from their signals. In the second stage, rental rates and wages of differentiated labor are uncovered.
Competitive final good firms buy intermediate goods to sell the final good to households. Compet-
itive labor packers use the supply of differentiated labor from households and sell a homogeneous
labor bundle to intermediate firms. Intermediate firms rent capital and hire labor to produce the
intermediate goods.

This timing protocol is standard in the literature2 and ensures two features. First, all markets
clear. Competitive final good firms ensure that the supply of final good matches consumption and
investment demands. Given prices of intermediate goods, differentiated wages, and rental rate
chosen at stage 1, firms allocate capital and labor to accommodate the demand from final good
firms. Finally, given the wages set at the first stage, labor packers aggregate the differentiated
labor services from households and supply homogeneous labor to intermediate firms such that the
labor market clears.

Second, intermediate good firms do not use information from the production process to extract
information from aggregate variables. This implies that both intermediate firms and households
use only information from their signals to form expectations.

2See for instance Nimark (2008), Angeletos and La’O (2011).
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Final good firms

The homogeneous final good Yt is a bundle of intermediate goods, Yi,t, where the index i ∈ [0, 1]
denotes the continuum of intermediate firms. The production function is given by

Yt =
(ˆ 1

0
(Yi,t)

1
1+µ

p
t di

)1+µp
t

, (1)

where µp
t is the time-varying price mark-up of intermediate goods following the process log(1+µp

t ) =
log(1 + µ̄p) + xp

t , and µ̄p is the steady-state value of the price mark-up. The price mark-up shock
xp

t follows
xp

t = ρpx
p
t−1 + εp

t , εp
t ∼ N (0, σ2

p). (2)

Final goods firms operate in a perfectly competitive market and sell the final goods to house-
holds for a price Pt. They solve a usual profit maximization problem

PtYt −
ˆ 1

0
Pi,tYi,tdi (3)

subject to (1). From the first-order conditions and the zero-profit condition, we derive the demand
for intermediate production

Yi,t =
(
Pi,t

Pt

)−
1+µ

p
t

µ
p
t Yt, (4)

where Pt =
(´ 1

0 (Pi,t)
− 1

µ
p
t di

)−µp
t

is the price level.

Intermediate good firms

Each intermediate producer is a monopolistic competitive firm i ∈ [0, 1] that uses labor and capital
to produce their goods. Good i is produce using technology

Yi,t = exa
t (Ki,t)α(γtLi,t)1−α − γtΦp, (5)

where γ represents the labor-augmenting deterministic growth rate of productivity and xa
t is a

total factor productivity shock. Ki,t and Li,t denote the amount of capital and labor demanded
by firm i at period t respectively, and Φp is a fixed cost included in the production function.3 The

3The fixed cost must be scaled by γt. Otherwise, it cost would become increasingly smaller in terms of production
over time.
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productivity shock follows
xa

t = ρax
a
t−1 + εa

t , εa
t ∼ N (0, σ2

a). (6)

Intermediate firms are subject to a Calvo (1983)-like pricing friction: in every period, only a
fraction 1 − ξp of firms can adjust prices. Firms not allowed to reset prices apply the following
indexation rule

Pi,t = (Πt−1)ιp
(
Π̄
)1−ιp

Pi,t−1, (7)

where Πt ≡ Pt/Pt−1 is gross inflation and Π̄ is its steady-state value. Firms that are able to
reoptimize prices choose the level P ∗

i,t that maximizes their expected discounted flow of profits
given by

Eit

∞∑
s=0

(βξp)sΛt,t+s

[(
Xt,t+sP

∗
i,t −MCi,t+s

)
Yi,t+s

]
, (8)

subject to Yi,t+s =
(

Xt,t+sP ∗
i,t

Pt+s

)−
1+µ

p
t+s

µ
p
t+s Yt+s. MCi,t is the marginal cost of firm i at period t. Λt,t+s is

the household’s stochastic discount factor between periods t and t+ s and Xt,t+s is the indexation
between the same periods. Consistently with the indexation rule (7), Xt,t+s is given by

Xt,t+s =

Π̄(1−ιp)s∏s
j=1

(
Πιp

t+j−1

)
if s ≥ 1

1 if s = 0.
(9)

Given the optimal prices and the indexation rule, the price level has the following law of motion

Pt =
ξp

(
Πιp

t−1Π̄1−ιpPt−1
)− 1

µ
p
t + (1 − ξp)

(ˆ 1

0
P ∗

i,tdi

)− 1
µ

p
t

−µp
t

. (10)

Labor packers

There is a continuum of households indexed by h ∈ [0, 1], each supplying differentiated labor
services. Following Erceg et al. (2000), there are labor packers that hire labor from the households
and aggregate them according to

Lt =
(ˆ 1

0
L

1
1+µw

t
h,t dh

)1+µw
t

, (11)

where µw
t denote the agency’s wage mark-up such that log(1 + µw

t ) = log(1 + µ̄w) + xw
t , and µ̄w is

the steady-state value of the wage mark-up. The shock follows the process

xw
t = ρwx

w
t−1 + εw

t , εw
t ∼ N (0, σ2

w). (12)
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Labor packers pay the wage Wh,t for each household h, and sell a homogeneous labor service
to intermediate firms at a cost Wt. Agents maximize profits

WtLt −
ˆ 1

0
Wh,tLh,tdh (13)

subject to (11). Thus, the labor demand for each household h’s labor service is given by

Lh,t =
(
Wh,t

Wt

)− 1+µw
t

µw
t
Lt, (14)

where Wt =
(´ 1

0 (Wh,t)
− 1

µw
t dh

)−µw
t

is the nominal wage index.

Households

Households h ∈ [0, 1] derive utility from consumption and leisure. In order to maximize their
expected utility, they choose consumption (Ch,t), holdings of government bonds (Bh,t), installed
capital level (Kh,t) and its utilization rate (Uh,t). The capital rented to firms, Ku

t , is determined
by the installed capital and the utilization rate. The objective function that each household h

optimizes is given by

U = Eht

 ∞∑
s=0

βsexc
t+s

ln (Ch,t+s − φCh,t+s−1) −
L1+χ

h,t+s

1 + χ

 , (15)

where Ch,t is consumption and Lh,t denotes the supply of differentiated labor services of household h
at period t. Households‘ preferences display external habit persistence, captured by the parameter
φ, while χ is the inverse of the Frisch elasticity of labor supply. Eht[·] is the expectation operator
conditional on households h’s information set, and xc

t is a preference shock that follows

xc
t = ρcx

c
t−1 + εc

t , εc
t ∼ N (0, σ2

c ). (16)

The capital stock Kh,t owned by household h evolves according to

Kh,t = (1 − δ)Kh,t−1 + exi
t (1 − S(Ih,t/Ih,t−1)) Ih,t, (17)

where S(It/It−1) is the adjustment investment cost function that denotes the share of investment
which does not become new capital. As in Christiano et al. (2005), the cost function S(·) has the
following properties: S(γ) = S ′(γ) = 0, and S ′′(γ) = s′′ > 0.

11



The investment-specific technological shock xi
t follows

xi
t = ρix

i
t−1 + εi

t, εi
t ∼ N (0, σ2

i ) (18)

Households rent to firms an effective amount of capital Ku
h,t given by

Ku
h,t = Uh,tKh,t−1, (19)

where Uh,t is the level of capital utilization. They receive RkKu
h,t for renting capital but pay a cost

a(Uh,t)Kh,t−1 in terms of the consumption good. Following Christiano et al. (2005), this function
has the properties a(Ū) = 0 and a′′(Ū) = a′′, where Ū is the value of the capital utilization rate in
the steady-state.

The households’ budget constraint is given by

PtCh,t + PtIh,t +Bh,t + Pta(Uh,t)Kh,t−1 +Qt+1,tAh,t ≤

Rt−1Bh,t−1 +Wh,tLh,t +Rk
tUh,tKh,t−1 + PtAh,t−1 + Th,t,

(20)

in each period. Th,t denote net transfers from the government, Ah,t is a vector of one-period
state-contingent securities and Qt+1,t is the price of such asset.4

Households supply labor in a market with monopolistic competition subject to a wage-setting
friction. Following Erceg et al. (2000), in every period only a fraction 1 − ξw of households are
able to optimize their wages. Those households choose their optimal wage by setting a mark-up
over the marginal rate of substitution between consumption and labor. Households who are not
able to optimize update their wage using a indexation rule given by

Wh,t = (Πt−1)ιw
(
Π̄
)1−ιw

γWh,t−1, (21)

which is a geometrically weighted average of steady-state wage growth (γΠ̄) and last period wage
growth (γΠt−1).

Each household minimizes their expected discounted labor disutility

Eht

[ ∞∑
s=0

(βξw)s

(
−
L1+χ

j,t+s

1 + χ

)]
(22)

subject to the budget constraint (20) at all periods s ∈ [0,∞) and to the period t + s nominal
4The assumption of a complete set of state-contingent securities guarantees that all households h will make the

same consumption and saving choices. This is true despite the fact that they have differentiated wages and form
expectations based on idiosyncratic signals. This assumption is for tractability. In that way, it is not required to
keep track of the stationary distribution of capital as in heterogeneous-agent models. Thus, standard techniques of
log-linearization to solve DSGE models can be applied even with informational frictions in the households’ decisions.
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wage Wh,t+s = Xw
t,t+sW

∗
h,t and

Xw
t,t+s =

(γΠ̄1−ιw)s∏s
j=1

(
Πιw

t+j−1

)
if s ≥ 1

1 if s = 0.
(23)

Given optimal prices and the indexation rule, the aggregate wage level has the following law of
motion

Wt =
ξw

(
γΠιw

t−1Π̄1−ιwWt−1
)− 1

µw
t + (1 − ξw)

(ˆ 1

0
W ∗

h,tdh

)− 1
µw

t

−µw
t

. (24)

Government Policies

The central bank sets the nominal interest rate according to a standard Taylor rule with smoothing
according to

Rt

R̄
=
(
Rt−1

R̄

)ϕR

(Πt

Π̄

)ϕπ (Yt

Ȳ

)ϕy

(1−ϕR)

exr
t , (25)

where variables with a bar denote the steady-state values and xr
t is the monetary policy shock,

which follows
xr

t = ρrx
r
t−1 + εr

t , εr
t ∼ N (0, σ2

r). (26)

For simplicity, I assume that the monetary authority responds to deviations of output to its steady-
state value instead of the natural output.

The government budget constraint is the following

PtGt +Rt−1Bt−1 = Bt + Tt (27)

where Tt and Bt are total lump-sum taxes and bonds, respectively. Government expenditure
follows a simple stochastic process given by G/Y = gy + xg

t , where gy ≡ Ḡ/Ȳ is the steady-state
ratio of government expenditure to output and xg

t is a government expenditure shock with process

xg
t = ρgx

g
t−1 + εg

t , εg
t ∼ N (0, σ2

g). (28)

Resource constraint and market clearing

The aggregate resource constraint

Ct + It +Gt + a(Ut)Kt = Yt, (29)
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is derived by integrating households’ budget constraint over h, and combining it with the zero
profit condition of final goods firms and labor packers and the government budget constraint.

Market clearing in labor and capital markets holds

Ku
t =
ˆ 1

0
Ki,tdi, Lt =

ˆ 1

0
Li,tdi.

The bond supply and the transfers

Bt =
ˆ 1

0
Bh,tdh, Tt =

ˆ 1

0
Th,tdh,

are consistent with the government spending rule and the public budget constraint (27).

Information and signal extraction

Intermediate good firms and households do not observe perfectly the structural shocks driving the
economy, but instead receive noisy idiosyncratic signals about them. Formally, the signal follows
the process

sl
j,t = xl

t + vl
j,t, vl

j,t ∼ N (0, τ 2
l ), (30)

where l ∈ {a, c, i, g, p, w, r} denote each type of shock and j ∈ [0, 1] is a index that pools both
intermediate good firms i and households h. This assumption implies that firms and household
receive signals with the same properties and are subject to the same degree of informational
frictions. Hence, an agent j’s information set is described as

Ij
t = {sa

j,τ , s
c
j,τ , s

i
j,τ , s

g
j,τ , s

p
j,τ , s

w
j,τ , s

r
j,τ : τ ≤ t}. (31)

Given that households and firms have the same unit mass, their average expectation is the same
and denoted by Ēt[·] ≡

´ 1
0 Ej,t[·]dj, where Ej,t[·] ≡ E[·|Ij

t ] denotes the j’s individual expectation.
Given the AR(1) structure of the shocks and signal structure (30), j’s rational expectation about
the shock xl

t is computed by using the Kalman filter such that

Ej,t[xl
t] = Ej,t−1[xl

t] + k̄l

[
sl

j,t − Ej,t−1[sl
j,t]
]

(32)

where denotes k̄l the steady-state Kalman gain of shock l given by

k̄l = p̃l

p̃l + r2
l

(33)
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where rl ≡ τl

σl
denotes the noise-to-signal ratio of signal l and p̄l can be computed by the Riccati

equation

p̃2
l −

[
1 − (1 − ρ2

l )rl

]
p̃l − r2

l = 0.

Note that p̃l is defined as the ratio of the individual expectation steady-state variance and the
shock variance, p̃l = p̄l

σ2
l
.Thus, the Kalman gain is a function of the shock’s parameters, (ρl, σl),

and the signal’s noise (τl), k̄l = k(ρl, σl, τl).
The Kalman gain is the key parameter that measures the degree of informational friction,

conditional on the shock’s parameters. In other words, conditional on (ρl, σl) there is a one-to-one
relationship between k̄l and the signal’s noise ratio τl. We get back on this when discussing priors
choices.

Moreover, the average expectation is given by

Ē[xl
t] = (1 − k̄l)Ēt−1[xl

t] + k̄lx
l
t = (1 − k̄lρl)Ēt−1[xl

t−1] + k̄lx
l
t. (34)

Thus, the current expectation is a weighted average between the past expectation and the
actual shock, whose weight is given by the Kalman gain.

If k̄l = 1 (τl → ∞) the model boils down to the full information benchmark. If k̄l = 0 (τl → 0),
the average expectation is zero (equals to the unconditional expectation)5.

2.1 Detrending and log-linearized model

Before showing the system of log-linearized equations that characterizes the model, we discuss the
detrending procedure.

All real variables grow along with the productivity trend, so they are detrended as follows:
Ẑt = Zt

γt , for any real variable Zt. Nominal variables grow along with the price level Pt, hence they
are stationarized using the following procedure: Ẑt = Zt

Pt
.6

The optimal prices and wages are detrended by dividing them to the price level of last period:
P̂ ∗

i,t = P ∗
i,t/Pt−1, while Ŵ ∗

h,t = Ŵ ∗
h,t/γ

tPt−1.7

Stationary variables are transformed by taking their log-deviation to steady-state value as
follows: zt = log(Zt/Z̄), for any stationary variable Zt. Thus, lower case variables denote log-
deviation from steady-state of the upper case variables.

5Zero is the solution for the equation Ē[xl
t] = (1 − ρl)Ēt−1[xl

t−1]
6One exception is the Lagrange multiplier of the budget constraint, Λt, that must be normalized to Λ̂t = Λtγ

tPt,
since it reflects the marginal utility of an additional unit of money, which declines as consumption grows at rate γ
and the price level rises.

7This simplifies the derivation as Eh,t[Ŵ ∗
h,t] = Ŵ ∗

h,t and Ei,t[P̂ ∗
i,t] = P̂ ∗

i,t since observe Pt−1. This would not be
true if we detrended them using Pt.
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For brevity, all log-linearized equations are provided in equation (65) in the Appendix A.2.
The derivation of the log-linearized equations above can be found in the Online Appendix.

Here we emphasize two key equations to clarify how dispersed information affects the equilib-
rium conditions.

Consider the Euler equation given by

ct = φ/γ

1 + φ/γ
ct−1 + 1

1 + φ/γ
Ēt[ct+1] − (1 − φ/γ)

1 + φ/γ
Ēt[rt − πt+1 − (xc

t+1 − xc
t)]

This is the same Euler equation of Smets and Wouters (2003) with two key differences due to
the presence of informational frictions.

First, expectations are heterogeneous, and hence average expectation replaces the full infor-
mation expectation operator. Second, current endogenous variables and structural shocks are not
observed. Thus, their expectations arise in optimal choices. In this case, households must form
expectations about the current nominal rate, rt, and the current preference shock, xc

t .
Now consider the New Keynesian Phillips (NKPC) curve given by

πt =ξpιpπt−1 + κpξpĒt [mct + xp
t ] + ψpĒt [πt] + (1 − ξp)βξp

ˆ 1

0
Eit[p∗

i,t+1]di (35)

where ψp ≡ (1 − ξp)(1 − ιpβξp).
An additional difference appears in the NKPC as the average expectation of firms’ future own

optimal prices matters for inflation. Note that
´ 1

0 Eit[p∗
i,t+1]di ̸= Ēt

[
p∗

t+1

]
, since the law of iterated

expectations does not hold for average expectations (Morris and Shin; 2005). Thus, we cannot
write the last term in terms of the average expected future aggregate optimal price, which is related
directly to future inflation.

As pointed out by Nimark (2008), as inflation depends on its own average expectation, higher-
order expectations matter for inflation dynamics. By taking the average expectations of this
equation and substituting it iteratively, we obtain that

πt = ξpιp
1 − ψp

πt−1 + κpξp

∞∑
k=1

ψk−1
p Ē

(k)
t [mct + xp

t ] + (1 − ξp)βξp

∞∑
k=0

ψk
pĒ

(k)
t

[ˆ 1

0
Eit[p∗

i,t+1]di
]
, (36)

where Ē(k)
s [zt] ≡

´ 1
0 Eis

[
Ē(k−1)

s [zt]
]
di, for any variable zt, all k ≥ 1 and s ≤ t, with the convention

that Ē(0)
t [zt] ≡ zt and Ē

(1)
t [zt] ≡ Ēt[zt].

Firms must form not only beliefs about marginal cost, price mark-up shock, and future own
price but also higher-order expectations about these variables. ψp ∈ (0, 1) is a key parameter
that determines how strong the dependence of inflation on higher-order expectations is. One key
feature is that inflation dependence on higher-order expectations decreases with the order.
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The latter differs from Nimark’s (2008) NKPC in two key aspects. First, our model includes
partial indexation to past prices, which generates a backward term. Interestingly, ψp is decreasing
in the indexation parameter, ιp, i.e., indexation decreases the relevance of higher-order expecta-
tions. The intuition is the following. As non-optimizing firms index their prices to past inflation,
optimal prices are less responsive to expectations about inflation. Thus, inflation is less dependent
on higher-order expectations.

Second, it explicitly considers that
´ 1

0 Eit[p∗
i,t+1]di ̸= Ēt

[
p∗

t+1

]
, which prevents representing

inflation as a function of the future inflation as in the full-information benchmark.8

One key feature of the solution method discussed in the next section is that we do not need to
represent equilibrium conditions in terms of higher-order expectations as in equation (36) to solve
the model. We can find a policy function that depends on higher-order expectations even defining
equilibrium conditions in the system of equation in terms of average expectations as in equation
(35).

3 Solution method

In this section, we present a novel solution method for DSGE models featuring imperfect and
dispersed information.

The log-linearized equilibrium equations (65) can be written as the following general system of
linear rational equations

F1Ēt[Yt+1] + F2

ˆ 1

0
Eit[Yi,t+1]di+G1Yt +G2Ēt[Yt] +HYt−1+

LĒt[xt+1] +M1xt +M2Ēt[xt] = 0m×1,

(37)

where i ∈ [0, 1] indexes an agent, Yi,t is a m × 1 vector of individual choices, Yt is a m × 1 vector
of aggregate endogenous variables and xt is a n× 1 vector of unobservable exogenous shocks.

Structural shocks xt follow a stationary stochastic process

xt = A1xt−1 + εt, εt ∼ N (0,Σε) (38)

where A1 is a diagonal matrix storing the persistence of each shock, and Σε is a diagonal covariance
matrix. Idiosyncratic signals are given by

si,t = Cxxt +Dvi,t, vi,t ∼ N (0,Σv), (39)
8As pointed out in Appendix D of Angeletos and Huo (2021), Nimark (2008) and Melosi (2017) abstract in

their derivation that
´ 1

0 Eit[p∗
i,t+1]di ̸= Ēt

[
p∗

t+1
]
. While this may not be quantitatively relevant, it is important for

correctly defining the general system of equilibrium conditions (37) and the guessed policy function (40).
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where Σv is a diagonal covariance matrix.9

Define the k-th order average expectation E(k)
t [·] given information of period t about the vector

of unobservable aggregate shocks xt as E(k)
s [xt] ≡

´ 1
0 Eis

[
E(k−1)

s [xt]
]
di, for all k ≥ 1 and s, t, with

the convention that E(0)
t [xt] ≡ xt and E

(1)
t [xt] ≡ Ēt[xt].

Following Nimark (2008), it is useful to denote the expectations hierarchy of xt from order l to
s as the vector

x
(l:s)
t ≡

[
E

(l)
t [xt]′ E

(l+1)
t [xt]′ · · · E

(s)
t [xt]′

]′
,

for s > l ≥ 0.
Following the insight of Nimark (2008), the solution method relies on a truncation of the state

space to circumvent the problem of the infinite regression of expectations (see Townsend; 1983).10

Specifically, we guess that the individual and aggregate equilibrium law of motion and expectation
hierarchy are given by

Yi,t = RYi,t−1 + Q0xt + Q1Ei,t

[
x

(0:k̄)
t

]
, (40)

Yt = RYt−1 + Qx(0:k̄)
t (41)

x
(0:k̄)
t = Ax(0:k̄)

t−1 + Bεt, (42)

where (R,Q0,Q1,A,B) are finite dimensional matrices to be determined in equilibrium. Q =
Q0ex + Q1T , ex is the selection matrix such that xt = exx

(0:k̄)
t and T is a order transformation

matrix such that E(1)
t

[
x

(0:k̄)
t

]
= Tx

(0:k̄)
t .11

The system of equations (37) generalizes the existing methods by allowing: i) average expecta-
tion about future own variables (the term post multiplying F2) and ii) endogenous state variables
(the term post multiplying H). The latter allows solving medium-scale DSGE models such as the
one in section 2.

Proposition 1 shows the dynamics for expectation hierarchy and the expressions for the fixed-
point solution for (A,B).

Proposition 1. Suppose that xt is a stationary process, the expectation hierarchy follow equation
(42) and agents use information from signals (39). Assuming common knowledge of rationality,

9The model from Section 2 implies a diagonal structure for A1, Σε and Σv. The solution method does not require
these assumptions.

10Nimark (2017) shows that as long as the impact on equilibrium outcomes of higher-order expectations decreases
with the order, there exists a k̄ such that the approximation error of the solution is less than any ϵ > 0.

11See details in Appendix F
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the individual and average expectations about the hierarchy are given by

Eit

[
x

(0:k̄)
t

]
= (Ik − KC) AEi,t−1

[
x

(0:k̄)
t−1

]
+ KCAx(0:k̄)

t−1 + KCBεt + KDvit

Ēt

[
x

(0:k̄)
t

]
=
(
Ik − K̄C

)
AĒt−1

[
x

(0:k̄)
t−1

]
+ K̄CAx(0:k̄)

t−1 + K̄CBεt.

where C = Cxex.
The expectation hierarchy consistent with the expectations above has coefficients (A,B) that

satisfy the matrix equations:
(
Ik − T ′K̄C

)
A = e′

xA1ex + T ′
(
Ik − K̄C

)
AT(

Ik − T ′K̄C
)

B = e′
x

(43)

such that K̄ and P̄ solve the Riccati equation resulting from equations

K̄ = P̄C ′
[
CP̄C ′ +DΣvD

′
]−1

P̄ = A
[
P̄ − K̄CP̄

]
A′ + BΣεB′

(44)

The Ricatti equation resulting from equations (44) solves the steady-state mean square error of
the expectation hierarchy. The equations uses the standard Kalman Filter with hierarchy dynamics
(42) as state equation and measurement equation as signals (39).

The key difference is that (A,B) is a result from agents signal extraction. Thus, the hierarchy
persistence (A) and response to shocks (B) depend on the Kalman gain matrix K̄. As any signal
extraction, the K̄ depends on the unobserved state dynamics (A,B).

Therefore, the equilibrium solution (A,B,K,P) is the fixed point from equations (43-44).
Since the signals (39) are exogenous, they do not depend on equilibrium conditions (37). This

simplifies finding the guessed coefficients for the equilibrium (R,Q0,Q1) and tremendously dimin-
ishes the computational costs.12

Before presenting the equilibrium dynamics in Proposition below, we want to emphasize one
assumption that simplifies substantially this task. We assume that when forming expectations
about Yt using the guessed solutions (40-41), agents know the past value of endogenous variables,
Yt−1.

This assumption contrasts with the expectation formation from Proposition 1 in which expec-
tations depend only on exogenous signals. This avoid learning from (past) endogenous variables,

12For instance, Melosi (2017) explains in his replication files that: “Be aware that estimating the DIM may take
several weeks or even a few months depending on the computer used for this task.” In our application, which has
a considerable higher scale model, takes 36 hours for 400k posterior draws in a standard notebook.
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which generates a feedback between the signal extraction and endogenous variable responses to
the hierarchy.13 Ribeiro (2017) considers the general case with endogenous signals.

This assumption is implicit in standard solution methods for imperfect under common informa-
tion such as Blanchard et al. (2013) and Baxter et al. (2011). This is also a common assumption
when studying the New Keynesian Phillips Curve under dispersed information (e.g., Angeletos and
La’O; 2009; Angeletos and Huo; 2021).

Proposition 2. For a given dynamics expectation hierarchy from equation (42), the system of
equations (37) has a recursive equilibrium law of motion (41) whose matrix coefficients satisfy:

1. (R,Q0,Q1) satisfy the matrix equations:

FR2 +GR +H = 0m×m (45)

[F1R +G1] Q0 +M1 = 0m×n (46)

[F1R +G1] Q1 + F1Q1A + (F2R +G2)Q1T + F2Q1TA+

[(F2R +G2)Q0 + FQ0A1 + (LA1 +M2)] ex = 0m×k (47)

where F ≡ F1 + F2, G ≡ G1 +G2 and k = n(k̄ + 1).

2. (Uhlig; 2001) R has a unique stable solution if all eigenvalues of R are smaller than unity
in absolute value.

3. Given the solution of R, denote the matrices (V0, V1) such that:

V0 = F1R +G1 (48)

V1 = Ik ⊗ (F1R +G1) + T ′ ⊗ (F2R +G2) + A′ ⊗ F1 + T ′A′ ⊗ F2 (49)

Provided that there exists a inverse for V0 and V1, the equilibrium solution for (Q0,Q1) is
given by

Q0 = −V −1
0 M1 (50)

vec(Q1) = −V −1
1 vec ([(F2R +G2)Q0 + FQ0A1 + (LA1 +M2)] ex) (51)

where vec(·) denotes columnwise vectorization.

Given the individual response to shocks (Q0) and to the individual expectation about the hierarchy
(Q1), the aggregate response to the hierarchy is given by: Q = Q0ex + Q1T

13One can think this assumption as a deviation from rationality as agents do not incorporate that their knowledge
about Yt−1 can be used to learn about x

(0,k̄)
t−1 , which would also change their beliefs about x

(0,k̄)
t .
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Proposition 2 connects the solution of imperfect common knowledge models with the standard
undetermined coefficients solution for full information DSGE models.

Condition (45) is exactly the same as the usual “brute force” approach of Uhlig (2001). In
other words, he equilibrium R is the same that would happen if agents had full information, as
shown in Appendix F.14

This has two key implications. First, R can be computed with standard techniques. Second,
informational frictions does not affect how endogenous variables respond to state variables. This
does not imply that information frictions are not important their persistence. Endogenous variables
persistence also reflects the hierarchy persistence.

Our solution method is a natural extension of Uhlig’s (2001) full information and Blanchard
et al.’s (2013) imperfect information methods. It is also related to the dispersed information
method from Melosi (2017). The key difference is that his method abstracts from state endogenous
variables but allows for endogenous signals.

Appendix F further explore the relation with those methods and show the details of the algo-
rithm to find the fixed point solution from Proposition 1.

4 Estimation

In this section, we discuss the data, the prior choices, and the posterior results of the Bayesian
estimation. We estimate the model featuring dispersed information (‘DI model’) using two different
datasets: one containing macroeconomic data only and other including both macroeconomic and
expectation data. For comparison, we also estimate the same model under full-information (‘FI
model’) where we abstract from information frictions in the same datasets.

4.1 Data

We collect U.S. quarterly macroeconomic and expectation data from 4Q:1981 to 4Q:2007. The data
on macroeconomic aggregates include the series of real GDP, real consumption, real investment,
GDP deflator index, annualized Fed funds rate, hours worked index and nominal wages index, and
come from the Federal Reserve Database (FRED).

We also gather the average expectation about one-quarter ahead real GDP, real consumption
and real investment, inflation and three-month Treasure bill rate from the US Survey of Professional
Forecasters (SPF). A detailed description of the datasets can be found in Appendix B.

When estimating medium scale DSGE models, the use of macroeconomic data is quite standard
in the literature. However, the inclusion of expectation data is notably less common. In recent

14The key assumption for this result is that agents observe past endogenous variables at period t.

21



years, several papers have tried to incorporate expectation data to discipline macroeconomic models
with complete and incomplete information. Del Negro and Eusepi (2011) adds one-year ahead
inflation expectations to estimate a conventional New Keynesian model. Melosi (2017) estimates a
small scale dispersed information model using data on inflation forecasts one-quarter and one-year
ahead. Del Negro et al. (2015) uses ten-year inflation expectations from the Blue Chip and SPF.

In this paper, we divert from previous literature in two ways. First, we use expectation data on
a broader set of variables. Second, we use data on current forecast revisions (the nowcast minus
last period forecast). The reasoning for the latter is as follows.

By aggregating equation (32), one can see that

R̄evt|t−1[xl
t] ≡ Ēt[xl

t] − Ēt−1[xl
t] = k̄l

[
sl

t − Ēt−1[sl
t]
]

= k̄lF̄ et−1[xl
t] (52)

where sl
t =
´ 1

0 s
l
itdi = xl

t is the aggregate signal, which due to the simply signal structure (30) is
equal to the shock l. R̄evt|s[·] denotes the average expectation revision from period t in comparison
with forecast from period s and F̄ es[xl

t] = xl
t − Ēs[xl

t] denotes the forecast error of a forecast made
in period s.

Note that the current forecast revision of shock l depends on the information frictions and
signals only.

By iterating equation (34), one can see that forecast Ēt[xl
t] depends on the whole history

of previous signals, the information frictions and shock’s persistence. Longer forecast horizons
(Ēt[xl

t+h]) and revisions (R̄evt|t−1[xl
t+h]) are likely to include more confounding variability as it

depends more heavily on the shocks persistence.15

The discussion above is true if we had data on the expectations about shocks. In practice, we
have data on endogenous variables, which creates another layer of complication.

Considering this issues, in our view, short horizon forecast revisions provide the best represen-
tation of expectation data for the purpose of identifying the degree of informational friction.

For completeness, we also estimate the model using two different expectational variables: i) one-
quarter ahead forecast errors; and ii) one-quarter ahead forecasts. We compare those estimates with
the baseline and evaluate which dataset provide better information about informational frictions.

15The h-step ahead forecast is given by Ēt[xl
t+h] = ρh

l Ēt|[xl
t] and analogous revision is R̄evt|t−1[xl

t+h] =
ρh

l R̄evt|t−1[xl
t]. They also depend on shocks’ persistence, ρl and the horizon h.
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4.2 Measurement equations

The measurement equations that link data with the variables for both models are the following

dyobs
t = γ̄ + yt − yt−1

dcobs
t = γ̄ + ct − ct−1

diobs
t = γ̄ + it − it−1

dwobs
t = γ̄ + wt − wt−1

lobs
t = lt

πobs
t = π̄ + 4πt

robs
t = r̄ + 4rt

revobs
dy,t|t−1 = Ēt[∆yt] − Ēt−1[∆yt] + εme

dy,t

revobs
dc,t|t−1 = Ēt[∆ct] − Ēt−1[∆ct] + εme

dc,t

revobs
di,t|t−1 = Ēt[∆it] − Ēt−1[∆it] + εme

di,t

revobs
π,t|t−1 = 4

(
Ēt[πt] − Ēt−1[πt]

)
+ εme

π,t

revobs
r,t|t−1 = 4

(
Ēt[rt] − Ēt−1[rt]

)
+ εme

r,t ,

(53)

where γ̄ ≡ 100(γ − 1) is the quarterly trend growth rate of productivity. The variables with
superscript “obs” correspond to the variables in the database. The notation dxobs

t denotes the
quarterly growth rate of the variables x ∈ {y, c, i, w} at period t. The data on hours worked (lobs

t )
is demeaned, while inflation (πobs

t ) and nominal interest rate (robs
t ) are computed in annual terms.

π̄ ≡ 400(Π̄ − 1) and r̄ ≡ 400(R̄ − 1) stand for the steady-state annualized inflation and nominal
interest rates, respectively. The variables revobs

π,t|t−1, for x ∈ {dy, dc, di, π, r}, are the current forecast
revision.

Measurement errors εme
x in the observational equations associated with forecast errors are in-

troduced to avoid stochastic singularity.16 They also capture the fact that the expectation data
from SPF are not completely consistent with the average expectations of the agents populating
our model. Measurement errors follow an i.i.d. Gaussian distribution with standard deviations
denoted by σme

x , with x ∈ {dy, dc, di, π, r}.
The measurement equations when using data on forecasts or forecast errors are shown in Ap-

pendix C. Those specification change revision data for either forecast or forecast errors with their
own measurement errors and links model variables.

16This is required since the complete dataset includes 12 time series, while the model has only 7 shocks.
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4.3 Prior distributions

As standard in the literature, we fix the value of some parameters that are not easily identified.
The quarterly depreciation rate δ is set to 2.5%, the value widely used in the literature.17 The ratio
of government expenditures to output gy is calibrated to its historical mean value of 18%. The
steady-state wage markup µ̄w is fixed at 1.5 as in Smets and Wouters (2007). Finally, the capital
share of the production function α is fixed 0.3 to be consistent with the historical capital-output
ratio.

The introduction of informational frictions is likely to affect the estimation of real and nominal
frictions, so we do not rely completely on estimates from previous papers to choose priors. Instead,
most of the priors are relatively loose. Table 1 shows the choices for priors on the left side. The
priors are the same for the FI and DI models. Obviously, the full information model does not
include the informational friction parameters and estimates with macroeconomic data only do not
include measurement errors for revision data.

The prior for parameters that have support between 0 and 1, such as the persistence of shocks,
partial adjustment of the Taylor rule, the Calvo frictions on prices and wages, indexation of prices
and wages to past inflation and habit persistence in consumption, follow a beta distribution (B)
with a mean of 0.5 and standard deviation of 0.2.

The trend growth, inflation rate, and nominal interest rate steady-state parameters have priors
with gamma distribution (G) whose mean equals to their sample average. The standard deviations
are 0.50 for the first prior and 1.00 for the others in order to ensure fairly loose priors.

The priors on the adjustment cost of investment, capital utilization, and the inverse of Frisch
elasticity are taken from Del Negro et al. (2007). The parameters specifying the Taylor rule have
priors with gamma distribution whose mean values are ϕπ = 1.5 and ϕy = 0.2 and the standard
deviations are 0.5 and 0.1, respectively.

Priors for the standard deviation of the structural shocks are distributed as an inverse gamma
(IG) with means chosen to match standard deviations of observables in the pre-sample 1957Q1-
1981Q1 as in Del Negro and Eusepi (2011). Standard deviations are set to 1.00, which implies
fairly loose priors.

Priors for Kalman gains of each shock are set to follow a beta distribution with a mean of
0.5 and a standard deviation of 0.2. The value of 0.5 is similar to estimates from Coibion and
Gorodnichenko (2015) using one-year inflation expectations and Del Negro and Eusepi (2011) for
one-year data on output, consumption, investment, inflation, and nominal rates. Note that their
estimates of frictions are using macroeconomic aggregates and not actual shocks. We discuss more
on this in section 5.

There is almost no evidence of the degree of informational friction for each shock. One exception
17See for instance Christiano et al. (2005), Smets and Wouters (2007) and Del Negro et al. (2007).
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is Melosi (2017) which finds that informational frictions on expenditure shocks are substantial in
comparison with productivity shocks. Since his model has a small scale and few shocks, we pursue
an agnostic view about which shocks are more prone to informational frictions.

We use the Kalman gain (k̄l) directly as a parameter instead of the noise-to-signal ratio (rl =
τl/σl) as Del Negro and Eusepi (2011) or the private signal variances (τl) as Melosi (2017). As
discussed by Del Negro and Eusepi (2011), forming priors on rl of a shock implicitly forms a prior
for the private signal’s variance dependent on the shock’s variance, σl. Analogously, when placing
priors on the Kalman gains of each shock, it implicitly generates a prior for the NRS dependent
on the shock’s persistence, ρl (see equation 33).18

Therefore, despite the shock processes (ρl, σl) having different priors for each shock l, when
assuming the same prior for the Kalman gains of all shocks, there is an implicit prior for τl|ρl, σl

that allows the same information friction for all shocks a priori.
Finally, priors for the standard deviation of measurement errors on the time series of forecast

errors are distributed as inverse gamma with a mean that matches roughly 5% of the total standard
deviation of each revision data. The standard deviations are small to ensure very tight priors, which
avoids measurement errors to explain more than 20% of the variation in the revision data.

4.4 Posterior distributions

Bayesian techniques are applied to estimate the models, by combining the prior densities described
before with the likelihood function computed using the Kalman filter. We use the Random Block
Random-Walk Metropolis-Hastings (RB-RWMH) algorithm with five blocks to draw from the
posterior distribution.19 Table 1 reports the posterior estimates for both models (FI and DI
models) for the Revision dataset. For each model and dataset, the table shows the mean and the
5%-95% percentiles of the posterior density.

Several interesting results arise from our estimation exercise. When we include expectation
data in the estimation, we find that parameter estimates for both models change substantially.
Under the complete dataset, the estimated persistence of several shocks declines substantially, in
particular for the monetary, investment and preference shocks. Moreover, the adjustment cost in
investment rises significantly (more than three times than standard estimates from SW), and the
Taylor-rule response to inflation and past interest rates both increase. Finally, in the DI model,
including data on forecast revisions increases both the estimated levels of information frictions and
the variances of the shocks.

18Del Negro and Eusepi (2011) has also a robustness check that they estimate the Kalman gain directly without
taking into account its relationship with other parameters.

19Estimates from RB-RWMH have substantially better chain convergence diagnostics than standard RWMH as
they generate chains with lower autocorrelation. We use 400k draws and a 50% burn-in. The candidate distribution
is a multivariate normal with
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Table 1: Prior and Posterior distributions

Dataset: Macroeconomic data only Dataset: Macroeconomic and expectations data
Prior Posterior: FI model Posterior: DI model Posterior: FI model Posterior: DI model

Dist. Mean Std. Dev. Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95%
Endogenous propagation parameters
χ G 2 0.75 2.24 1.40 3.40 1.85 1.17 2.92 2.24 1.59 3.04 1.84 0.99 3.04
φ B 0.5 0.2 0.96 0.90 0.99 0.33 0.13 0.53 0.98 0.96 0.99 0.98 0.96 0.99
a′′ G 0.2 0.1 0.39 0.23 0.59 0.31 0.17 0.49 0.46 0.29 0.69 0.46 0.29 0.67
s′′ G 4 1.5 3.59 1.63 6.25 5.14 2.52 8.39 16.32 12.39 20.87 12.35 8.78 16.45
ϕy G 0.2 0.1 0.39 0.25 0.56 0.20 0.12 0.29 0.06 0.03 0.10 0.31 0.21 0.42
ϕπ G 1.5 0.5 0.77 0.45 1.18 1.01 0.62 1.52 2.77 2.29 3.37 1.55 0.99 2.18
ϕr B 0.5 0.2 0.71 0.60 0.80 0.71 0.60 0.82 0.88 0.85 0.91 0.92 0.89 0.95
ιp B 0.5 0.2 0.22 0.04 0.76 0.22 0.04 0.67 0.04 0.01 0.08 0.69 0.48 0.80
ιw B 0.5 0.2 0.35 0.10 0.67 0.48 0.15 0.82 0.46 0.16 0.78 0.39 0.12 0.72
ξp B 0.5 0.2 0.98 0.96 0.99 0.98 0.97 1.00 0.88 0.85 0.91 0.98 0.98 0.99
ξw B 0.5 0.2 0.81 0.70 0.89 0.08 0.02 0.18 0.80 0.74 0.85 0.92 0.85 0.96
Steady-state parameters
πss G 2.62 0.5 2.20 1.68 2.67 2.29 1.80 2.70 2.81 2.37 3.25 1.49 1.06 1.96
rss G 5.15 0.5 6.96 6.10 7.87 7.38 6.38 8.41 6.22 5.52 6.95 7.44 6.38 8.57
γss G 0.5 0.1 0.36 0.31 0.41 0.40 0.35 0.45 0.35 0.32 0.37 0.47 0.45 0.50
Structural shocks parameters
ρc B 0.5 0.2 0.42 0.22 0.68 0.89 0.79 0.96 0.24 0.15 0.34 0.13 0.07 0.20
ρi B 0.5 0.2 0.52 0.36 0.70 0.48 0.36 0.60 0.25 0.19 0.32 0.29 0.22 0.35
ρg B 0.5 0.2 0.98 0.97 1.00 0.99 0.97 1.00 0.98 0.96 0.99 0.99 0.98 1.00
ρp B 0.5 0.2 0.67 0.15 0.84 0.55 0.13 0.77 0.88 0.83 0.91 0.10 0.03 0.21
ρw B 0.5 0.2 0.33 0.16 0.53 0.88 0.79 0.96 0.28 0.15 0.43 0.34 0.21 0.48
ρr B 0.5 0.2 0.96 0.91 0.98 0.91 0.79 0.98 0.32 0.23 0.41 0.41 0.29 0.54
ρa B 0.5 0.2 0.92 0.87 0.97 0.96 0.92 0.99 0.88 0.84 0.92 0.998 0.995 0.999
σc IG 0.3 1 0.16 0.11 0.22 0.14 0.08 0.26 0.20 0.17 0.23 1.72 1.28 2.29
σi IG 1.5 1 1.25 1.02 1.50 1.72 1.21 2.38 1.26 1.10 1.44 5.65 4.63 6.84
σg IG 0.3 1 0.53 0.46 0.61 0.53 0.46 0.62 0.60 0.53 0.68 0.50 0.43 0.58
σp IG 0.1 1 0.06 0.03 0.15 0.10 0.05 0.20 0.04 0.03 0.05 0.39 0.31 0.50
σw IG 0.75 1 0.54 0.44 0.65 0.64 0.47 0.91 0.57 0.47 0.68 0.91 0.55 1.50
σr IG 0.1 1 0.13 0.11 0.15 0.12 0.11 0.13 0.13 0.11 0.14 0.12 0.11 0.14
σa IG 0.3 1 0.41 0.37 0.46 0.42 0.37 0.47 0.41 0.37 0.46 0.44 0.39 0.49
Information friction parametersa

k̄c B 0.5 0.2 0.67 0.50 0.82 0.25 0.20 0.31
k̄i B 0.5 0.2 0.84 0.70 0.95 0.40 0.36 0.45
k̄g B 0.5 0.2 0.60 0.47 0.73 0.52 0.49 0.55
k̄p B 0.5 0.2 0.83 0.64 0.96 0.39 0.30 0.47
k̄w B 0.5 0.2 0.77 0.57 0.93 0.68 0.41 0.90
k̄r B 0.5 0.2 0.20 0.07 0.36 0.72 0.63 0.80
k̄a B 0.5 0.2 0.90 0.79 0.97 0.05 0.04 0.07
Measurement errors standard deviationsb

σrev
me,y IG 0.1 0.02 0.47 0.41 0.53 0.29 0.26 0.33
σrev

me,c IG 0.1 0.02 0.42 0.38 0.48 0.21 0.18 0.23
σrev

me,i IG 0.5 0.2 2.24 2.00 2.52 1.22 1.09 1.37
σrev

me,π IG 0.15 0.05 0.75 0.67 0.83 0.45 0.40 0.50
σrev

me,r IG 0.15 0.05 0.30 0.26 0.34 0.25 0.22 0.29
Marginal Likelihood -915.50 -926.25 -1554.40 -1293.30

Note: G, IG and B stand for: Gamma, Inverse Gamma and Beta distributions, respectively.
aApplies to the dispersed information model only.
bApplies to the dataset including macroeconomic and expectations data only.

There are notable differences in the parameter estimates for the FI and DI models under both

26



datasets. The introduction of information frictions substantially reduces habit formation and
wage stickiness, which is particularly evident when models are estimated using macroeconomic
data only. Second, there is a considerable decrease in the variance of measurement errors, a first
indication that the DI model provides a better explanation for expectation data, which we confirm
further when comparing the marginal likelihoods of the FI and DI models. Introducing information
frictions also increases the variances of shocks for both datasets, with a more pronounced effect
observed in the complete dataset. The higher shock volatility is somewhat offset by the impact
of information frictions, resulting in less pronounced responses. Overall, the estimates derived
from the complete dataset exhibit stronger standard frictions, including habits, adjustment costs,
price and wage indexation, and robust informational frictions across all shocks. Monetary shocks
display comparatively smaller information frictions, although they remain distant from the full
information benchmark.

Overall, the estimates for the complete dataset has stronger standard frictions (habits, adjust-
ment costs, price and wage indexation and rigidity) and also strong informational frictions for all
shocks. Monetary shocks are the ones with smaller information frictions, but still far from the full
information benchmark.

Table 1 shows the logarithm of the marginal likelihood for each model and dataset. When
comparing the marginal likelihood of both models for the dataset containing only macroeconomic
data, we find a difference of 11.5 log points in favor of the DI model. For the dataset including
expectation data, the difference in favor of the DI model increases considerably to 261.1 log points.
This result provides strong evidences that a model with informational frictions instead of the
standard reduced-form frictions used to generate inertia in DSGE models can explain significantly
better the expectation data.

5 Model evaluation and implications for measures of in-
formation frictions

Coibion and Gorodnichenko (2015) explore a general feature of models with information frictions
that relate forecast errors and revisions to provide simple measures of informational frictions from
the SPF.

In this section, we follow a similar empirical strategy. For each variable z in the SPF, we
estimate the following regression

Revt|t−1[zt] = βFEt−1[zt] + errort, (54)

where R̄evt|t−1[zt] = Ēt[zt] − Ēt−1[zt] and F̄Et−1[zt] = zt − Ēt−1[zt]
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Following the same steps as (52) one can see that if z follows an AR(1), then β is equal to the
Kalman gain, k̄z.

Figure 1 shows the scatter plot for each variable with the fitted line in solid black line. In
the following, we refer to those estimates as empirical Kalman gains (eKGs), i.e., Kalman gains
directly estimated in the data.

Figure 1: Empirical Kalman gains from SPF expectation data (1981Q4-2007Q4)
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Note: Output, consumption and investment refers to their growth rates. Inflation and interest rates are in levels.

If agents had full information, all data points should be in the red dashed line (the 45º line).
Thus, Figure 1 shows suggests a clear departure of FI in the SPF data similarly to previous studies
such as CG and BGMS.

It is also clear that variables differ in their information friction measure. For instance, the Fed
funds rate has forecast revisions much more aligned with the forecast errors than any other series.

In our model, the AR(1) assumption holds for the shocks’ dynamics. Thus, regression (54)
strictly applies only if we had data on shocks instead of endogenous variables. The equilibrium
dynamics for endogenous variables (41) depends on their lags and the whole hierarchy of expecta-
tions about all shocks. Therefore, the relationship between forecast errors and forecast revisions
from endogenous variables does not generate a close form prediction as in equation (54).

In a dynamic beauty context model with one action and AR(1) fundamental, Angeletos and
Huo (2021) show analytically that eKGs are determined by the interaction of informational frictions
with other frictions in the model.

Therefore, in our general model, estimates from those regressions capture a combination of:
i) informational frictions of each shock; ii) “ad-hoc” frictions associated with endogenous persis-
tence.20

20CG extends their empirical specification to more general data generating processes such as AR(p) for inflation
or a V AR(1) some selected macroeconomic models. In our model, the persistence of endogenous variables, R, from
the solution (41) is a function of structural parameters.
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The eKG of each variable is likely to be associated with different frictions. may capture infor-
mation frictions but also many other frictions. With our estimated model, we can shed light on
the relative importance of those frictions.

In the following, we do three experiments. First, we abstract from the issues implied by the
model in those regressions and evaluate if data generated by the DI model generates estimates for
Kalman gains that we find in the SPF data. This may be seem as an unmatched moment that is
not used in the estimation that we want to check if the model is able to capture.

Second, we compare the eKGs from simulated data based on posterior means from different
expectation datasets. In our baseline estimates, we use data on forecast revisions. We compare the
implied eKGs from the baseline with alternative posterior estimates based on forecast errors and
forecasts.

Third, we evaluate how sensitive eKGs are to changes in real, nominal and informational
frictions. The latter pursue to evaluate if the empirical strategy proposed by CG truly uncovers
informational frictions in our model.

5.1 Does the model match empirical measures of informational fric-
tions?

In this section, we pursue the following experiment. Consider the vector of parameters, Θ, that
collects all parameters of the model and the vector of some selected endogenous variables, zt. For a
given Θ, we simulate a nsim samples of those variables and their expectations {zt, Ēt[zt], Ēt−1[zt]}
and measurement errors {εme

z,t } for t = 1, · · · , Tsim and z ∈ {dy, dc, di, π, r}. Then, we construct
nsim time-series for average forecast revisions and forecast errors such that

R̄ev
sim

z,t|t−1 = Ēt[zt] − Ēt−1[zt] + εme
z,t

F̄ e
sim

z,t−1 = zt − Ēt−1[zt]

for t = 1, · · · , Tsim and z ∈ {dy, dc, di, π, r}. Note that the constructed series for revision is
consistent with the measurement equations (53) as we also draw the measurement errors.

Then, we compute the implied eKGs for nsim regressions (54) and get the average Kalman gain
and standard deviations.

Figure 2 shows the results for Tsim = 105, nsim = 100 and parameter vector equals to the
prior mean (Θ = Θ) and posterior means (Θ = Θ̄).21 The black error bars (with ◦) represent the
estimates from the SPF presented in Figure 1.

21We use Tsim = 105 to match the sample size from SPF data. nsim = 100 is sufficient large to avoid sampling
variability affecting meaningfully the Kalman gain estimates.

29



Figure 2: Empirical Kalman gains from simulated data from DI model
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The eKGs from simulated data using the priors mean (red error bar with □) are similar for
all variables and close to the structural Kalman gains (sKG, henceforth), k̄x, x ∈ {c, i, g, p, w, r, a},
whose mean is 0.5.

When comparing the same estimates from the posterior mean (blue error bar with ⋄), those
are much more aligned with the direct estimates from the data. Except for inflation, the Kalman
gain estimates from the model are very close to their data counterpart.

Recall that we use data from forecast revisions at the same horizon in the estimation, but the
Bayesian estimates do not pursue to match this relation between forecast revisions and forecast
errors.

5.2 Which dataset: Forecasts, forecast errors or forecast revisions?

This section compares estimates using different expectation datasets. In our baseline estimation,
we use data on forecast revisions because our model suggests that this is a closer measure of
information frictions and agents’ information sets.

We reestimate the DI model by changing forecast revision data for two other alternatives: i)
forecasts and ii) forecast errors (FE, henceforth). Appendix C provides details on measurement
equations for each dataset. Each specification has its own measurement error for each expectational
variable.

Interestingly, using data on forecasts or forecast errors is not equivalent. The likelihood depends
on the econometrician’s one-step ahead forecast errors. Thus, when using forecasts as data, forecast
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errors from econometrician’s information set enter in the likelihood. This is different from the
average forecast error from SPF’s participants.

Table 3 in Appendix D shows the estimates from both datasets and compares them with two
baselines: i) macroeconomic data only and ii) forecast revision dataset. Priors from parameters
in this table are common and the same as in Table 1. Table 4 in the same Appendix shows the
specific priors for measurement errors and their posteriors. Prior choices are made analogously to
the baseline measurement error described in section 4.3.

When comparing the posterior estimates from different datasets, some results stand out. Esti-
mates from information frictions differ remarkably depending on which expectation data is used.
The FE dataset tend to less informational frictions when comparing with the baseline ‘Revision
dataset’ (except for k̄w).

The ranking of which shock has stronger information frictions is also different. For instance,
baseline estimates imply quite strong information frictions for TFP and preference shocks (0.05
and 0.25 respectively), while the opposite is true for the FE dataset (0.59 and 0.80 respectively).
Estimates are similar only for k̄r (roughly 0.7). The forecast dataset also does not provide similar
results for sKGs. It differs markedly regarding the information friction for the monetary shock
(k̄r = 0.14) and price markup (k̄r = 0.87).

Real frictions such as habits, utilization and investment adjustment costs are similar across
estimates. They differ in terms of nominal rigidities. The baseline dataset implies quite high price
and wage rigities and moderate indexation for both. FE dataset implies slightly lower estimates
for price and wage rigidities whereas the Forecast dataset estimates imply moderate rigidity for
prices and very weak for wages. Both datasets find that price indexation plays a minor role.

Since there is no clear pattern in informational frictions in those datasets, one question arises:
which dataset provides more accurate information about those frictions?

Since we are using different datasets, we cannot use marginal likelihoods to compare the fit of
the alternative estimates. Instead, we use the eKGs from the SPF data to evaluate the alternative
estimates. Specifically, we do the analogous experiment from the previous section, but using the
posterior means from different datasets.

Figure 3 shows the eKGs from the alternative datasets and compares them to the estimates
directly from the SPF. It also compares with estimates from simulated data using the posterior
mean using macroeconomic data only.

When abstracting from using data on expectations (grey error bar with ▽), the estimates yield
substantially less information frictions for output, consumption, investment and inflation; and
higher information frictions for interest rate than estimated directly from SPF data (black error
bar with ◦).22 Recall that this dataset yields estimates for sKGs ranging from 0.6 − 0.9 for all

22Estimates for ‘Macroeconomic only dataset’ have much lower error bands because the simulation does not
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Figure 3: Empirical Kalman gains from simulated data from DI model
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Note: Output, consumption and investment refers to their growth rates. Inflation and interest rates are in levels.

shocks except the monetary shock. The Kalman gain for the monetary shock, k̄r, is 0.20. When
including revision data in the estimation, the contrary holds: estimate for k̄r is 0.72 and for other
shocks ranges from 0.05 − 0.68. These sharp differences in sKGs explain the implied differences in
eKGs.

By visual inspection, estimates from the model using the ‘forecast revision dataset’ (blue error
bar with ⋄) are closer to the SPF data in general.

For the other alternatives, there is no clear visible pattern. Estimates using the ‘forecast error
dataset’ (green error bar with △) yield eKG for output close to the estimates with macroeconomic
data only. They imply an intermediate degree of information frictions consumption and investment
and nominal rates when comparing with revision data and macro data only. Interestingly, it also
provides a closer match to the SPF data estimates for inflation than any other dataset.

Finally, estimates using the ‘forecast dataset’ (red error bar with □) produce reasonable esti-
mates for output and inflation and imply very strong (weak) informational frictions in consumption
(nominal rate) data.

If the eKGs are good measures for information frictions, our results suggest that revision data
is more informative about informational frictions than data on forecasts or forecast errors.
include any measurement error in forecast revisions or errors by definition.
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5.3 Do empirical measures of informational frictions really capture
information frictions?

Until now, we used the eKGs as benchmark measure for information frictions to discipline our
model estimates. Now, conditional on our model being a good description of the expectational
data, we can shed some light on how informative eKGs are regarding actual information frictions.

We pursue three additional experiments. In the baseline, we simulate samples for posterior
mean for the ‘Forecast revision’ dataset. In this section, for each parameter we change its value
within a grid and keep other parameters fixed at posterior mean. For each set of new parameters,
we simulate nsim = 100 samples of time-series t = 1, · · · , Tsim with Tsim = 105 and get the eKGs
for each parameter vector in the grid.

First, we do a sanity check exercise. We keep all parameter fixed at the posterior mean and
set all sKGs (k̄x, for x ∈ {c, i, g, p, w, r, a}) to the same value, varying from 0 (No info) to 1 (Full
info).

Figure 4 shows that estimates of eKGs are closely aligns into the 45º degree (black dashed) line
for output, consumption and investment. Thus, when all information frictions change together in
the same direction, eKGs of those variables change in the same proportion.

Figure 4: Empirical Kalman gains as a function of informational frictions
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The black dashed line represents the 45º degree line.

The same is not true for inflation and more strongly for the nominal rate. Two patterns
stand-out. First, for very strong informational frictions, eKGs tend to underestimate the degree
of informational frictions for those variables. Second, as sKGs increase, eKGs gets close to the
structural values.
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If anything, this exercise suggests that informational frictions may be even stronger than sug-
gested by CG’s empirical strategy.

Second exercise, instead simulating data by changing all sKGs simultaneously, we do a new
simulation by changing each parameter. Figure 5 shows the results of the second experiment.

Figure 5: Empirical Kalman gains as a function of informational frictions
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The black dotted vertical line represents the posterior mean of each parameter. The black dashed line represents
the 45º degree line.

Each eKG is increasing on at least one of the sKGs, which reassures their relevance as measures
of those frictions. Information frictions for each shock does not affect all eKGs homogeneously.
Interestingly, each eKG is affected differently by each sKG and their relationship are intuitive.

For instance, the information friction on the preference shock (k̄c) plays a major role in the
consumption and output eKGs only. Similarly, the monetary shock KG (k̄r) plays a major role in
the nominal rate eKG.

Wage markup and productivity information frictions does not play an important role for the
selected variables.

In our final exercise, we evaluate how sensitive the eKGs are to changes to seven key parameters
of the model that generates endogenous persistence: Habits (φ), investment adjustment costs
(s′′), monetary rule smoothing (ϕr), price rigidity (ξp) and indexation (ιp), wage rigidity (ξw) and
indexation (ιw).
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Figure 6 shows the results from those simulations. The key finding is that most of the eKGs
are remarkably stable when changing the parameter values. There are few exceptions that worth
mentioning.

Figure 6: Empirical Kalman gains as a function of real and nominal frictions
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First, some eKGs are sensitive are specially sensitive to frictions that determine the persistence
for those variables for the whole parameter support. Specifically, consumption eKG is sensitive
to habits (φ), inflation eKG to price indexation (ιp), nominal rate eKG is sensitive to monetary
rule smoothing (ϕr). Price rigidity (ξp) also plays a important role for inflation and nominal rate
eKGs.

Second, some eKGs are very when some parameters are on extreme values. For instance, when
prices are flexible (ξp → 0), eKGs for inflation and nominal rates deviate substantially from (in
different directions). Output, investment and nominal rate eKGs are also quite sensitive when
there are no investment adjustment costs. Since those two are very unlikely scenarios given the
literature (and ours) estimates of those two parameters, those results reinforce the robustness of
the approach of measuring informational frictions from regressions in the spirit of CG.

However, some variables might be less informative about information frictions than others. For
instance, consumption and inflation are more sensitive to real and nominal frictions.
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6 Frictions, shocks and business cycles when accounting
for informational frictions

This section discusses how the incorporation of informational friction changes our understanding
of i) which frictions are most important to fit the data, ii) what drives business cycle fluctuations,
and iii) how shocks propagate in the economy.

Can information frictions replace standard frictions?

We find that both standard and informational frictions are essential to fit the macroeconomic and
expectation data. Indeed, estimates of real and nominal rigidities increase. This result goes against
a strand of the literature that argues, in more theoretical settings, that incomplete information can
substitute for the more “ad-hoc” forms of sluggish adjustment usually embedded in macroeconomic
models.

What are the main drivers of business cycles fluctuations?

We perform a forecast error variance decomposition (FEVD) exercise to explore the drivers of
business cycles. Figure 7 shows the results of this exercise.

When incorporating data on expectations in the estimation of the DI model, several noteworthy
observations arise. First, the variance of consumption forecast errors is predominantly attributed
to preference shocks. Second, there is a notable increase in the relevance of government expenditure
shocks for output, associated with a decrease in their relevance for consumption. Lastly, the role of
monetary shocks in driving fluctuations in the nominal interest rate decreases over longer horizons
as other shocks, especially the investment-specific technology shock, become more important.

When using macroeconomic data only, several notable distinctions emerge from the findings
of Smets and Wouters (2007) (SW). First, monetary shocks exhibit a relatively higher impact
on the variance decompositions of real variables, particularly evident for output and investment.
This phenomenon is attributed to the unexpectedly high persistence of monetary shocks in our
estimation. This discrepancy relative to SW’s findings may be partly explained by differences in
their sample period, which spans from 1966:1 to 2004:4, compared to ours, which spans from 1981:1
to 2007:4. Furthermore, our exercise finds that the primary driver of inflation variance is price
markup shocks, while SW finds that wage markup shocks also play a significant role in driving
inflation fluctuations. Additionally, investment shocks play a more prominent role in explaining
output fluctuations in our setting compared to theirs. This observation is consistent with the
findings of Justiniano et al. (2011) and Auclert et al. (2020), and can be attributed to the inclusion
of inventories in total investment, which SW abstracts from.
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Figure 7: Forecast error variance decomposition for macroeconomic aggregates by model and
dataset
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(a) DI model - Forecast revision dataset
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(b) FI model - Forecast revision dataset
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(c) DI model - Macroeconomic only dataset
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(d) FI model - Macroeconomic only dataset
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Impulse response functions

In this section, we compare the impulse response functions (IRFs) of the DI and FI models.
To highlight the effect of informational frictions on the dynamic properties of the model, we

also compute the IRFs of a FI model with the mean of posterior estimates of the DI model. This
comparison helps to disentangle if the DI model dynamics differ from the FI model due to the
informational frictions or the estimates from other parameters. Indeed, the differences between
the black line and the red line are entirely explained by the informational friction.

The overall similarity in the dynamics of the FI model (blue line) and the DI model (black
line) is noticeable, but their impulse responses also feature some key differences. For instance, the
investment shock has a more pronounced and persistent effect on real wages, while the opposite
holds for the effect of the shock on consumption (Figure 8). Interestingly, these differences are
explained entirely by the introduction of dispersed information. Moreover, compared with its
full-information counterpart, the DI model generates a weaker recession after inflationary price
markup shocks. This is explained by the fact that, when agents do not observe perfectly the price
mark-up shock, its impact on price increases is muted, and hence the central bank does not need to
raise interest rates and cools the economy down as much as in the FI model (Figure 10). Finally,
monetary shocks have stronger effects on macroeconomic aggregates, but a less inflationary impact
(Figure 9).

Figure 8: Impulse responses to an investment-specific technological shock
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Figure 9: Impulse responses to a monetary shock
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Figure 10: Impulse responses to price markup shock
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7 Conclusion

We develop a general solution method that allows enriching a standard medium-scale DSGE model
with dispersed information and estimating using Bayesian techniques with comprehensive macroe-
conomic and expectation data. We draw important conclusions regarding the role information
frictions play in business cycles.

First, the degree of informational friction varies significantly across shocks and indicates im-
portant departures from complete information. Second, information frictions cannot substitute
standard frictions to generate inertia in macroeconomic variables. When disciplining our model
with expectational data, standard frictions such as habits and investment costs increase substan-
tially despite the pervasive informational frictions. Third, simulated data from the model can
match standard empirical measures of informational frictions when using data on forecast revi-
sions in the estimation. Fourth, we use our model to assess whether those empirical estimates
are reliable measures of informational frictions. We find that these measures are more sensitive
to information frictions than to standard frictions. Finally, compared with its full-information
counterpart, our model generates a weaker recession after inflationary price markup shocks and
stronger real effects but a less inflationary response to monetary shocks.

A natural extension for our work is evaluating whether the introduction of a model featuring
dispersed information is able to reduce the number of exogenous shocks driving the economy with-
out worsening the fit of the model to the data. Some of the shocks embedded in mainstream DSGE
models have debatable microfoundation, hence reducing the dimensionality of the vector of struc-
tural shocks would gives us more parsimonious and better microfounded DSGE models to study
business cycles. Moreover, embedding a richer informational structure (with public endogenous
and exogenous signals, for instance) in our model may improve its performance in explaining busi-
ness cycle patterns. In conclusion, we see an open venue for exploring the quantitative potential
of DSGE models with informational frictions.
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Appendix

A Log-linear model and full derivation

A.1 Optimality conditions

Households

From the households’ utility maximization problem, we get the following first-order conditions for
consumption and bonds, respectively

Eht[Λh,tPt] =
Eht

[
eηc

t

]
Ch,t − φCh,t−1

(55)

Eht[Λh,t] = βEht [Λh,t+1Rt] (56)

where Λh,t is the Lagrange multiplier of households’ budget constraint (20). The optimal conditions
for capital and investment are given by, respectively:

Φh,t = βEht

[
Λh,t+1

(
Rk

t+1Uh,t+1 − Pt+1a(Uh,t+1)
)
Pt+1

]
+ (1 − δ)βEht [Φh,t+1] (57)

Eht[Λh,tPt] = Φh,tEht

[
eηi

t

] (
1 − S

(
Ih,t

Ih,t−1

)
− S ′

(
Ih,t

Ih,t−1

)
Ih,t

Ih,t−1

)

+βEht

Φh,t+1e
ηi

t+1S ′
(
Ih,t+1

Ih,t

)(
Ih,t+1

Ih,t

)2
 (58)

where Φh,t is the Lagrange multiplier associated with the law of motion of capital. The optimal
value of the capital utilization rate solves

Eht[Rk
t ] = a′(Uh,t)Eht[Pt]. (59)

Recall that households can buy state-contingent assets in terms of consumption (but not for
leisure). Therefore, it must hold that for all households h ∈ [0, 1] that Ch,t = Ct, Ih,t = It,
Uh,t = Ut, Λh,t = Λt and Φh,t = Φt. However, households still have heterogeneous expectations,
Eht[·], wages wh,t and labor supply Lh,t.

The optimal condition of the wage setting problem is

Eht

[ ∞∑
s=0

(βξw)s

(
Λt,t+s

Xw
t,t+s

µw
t+s

−
1 + µw

t+s

µw
t+s

Lχ
h,t+s

W ∗
h,t

)
Lh,t+s

]
= 0 (60)
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where Λt,t+s ≡ Λt+s

Λt
is the stochastic discount factor from period t to period t + s. The marginal

rate of substitution of labor and consumption is defined as

MRSh,t ≡ −
ULh,t

UCh,t

= Lχ
h,t (Ch,t − φCh,t−1) . (61)

Intermediate good firms

At stage 1, firms choose their optimal price based on the information from signals. The optimal
price P ∗

i,t that maximize intermediate firm i’s profit solve the following first-order condition

Eit

[ ∞∑
s=0

(βξp)sΛt,t+s

(
Xt,t+s

µp
t+s

− 1 + µp
t+s

µp
t+s

MCi,t+s

P ∗
i,t

)
Yi,t+s

]
= 0. (62)

At stage 2, they hire labor at the nominal wage Wt and rent capital at the rental rate Rk
t . Cost

minimization subject to production function (5) implies that the capital-labor ratio is given by23

Ki,t

Li,t

= α

1 − α

Wt

Rk
t

. (63)

We obtain that the marginal cost is given by

MCi,t = 1
αα(1 − α)1−α

(Rk
t )α (Wt)1−α

at

. (64)

Since the production function displays constant return of scale, capital-labor ratios and marginal
costs are the same across firms in equilibrium.

23Since factor prices are revealed at stage 2, firms does not need to form expectations for Wt and Rk
t .
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A.2 Log-linearized model

The log-linearization of optimal conditions leads to the following system of equations

ct = φ/γ

1 + φ/γ
ct−1 + 1

1 + φ/γ
Ēt[ct+1] − 1 − φ/γ

1 + φ/γ
Ēt[rt − πt+1 − (xc

t+1 − xc
t)] (65.1)

it =
(

1
1 + β

)
it−1 +

(
β

1 + β

)
Ēt[it+1] +

(
1

s′′(1 + β)γ2

)(
qt + Ēt

[
xi

t

])
(65.2)

qt =
(
β(1 − δ)

γ

)
Ēt[qt+1] +

(
1 − β(1 − δ)

γ

)
Ēt

[
rk

t+1

]
− Ēt[rt − πt+1] (65.3)

kt =
(

1 − δ

γ

)
kt−1 +

(
1 − 1 − δ

γ

)(
it + xi

t

)
(65.4)

ut =
(
R̄k/a′′

)
Ēt[rk

t ] (65.5)

ku
t =kt−1 + ut (65.6)

mrst =
(

1
1 − φ/γ

)
(ct − φ/γct−1) + χlt (65.7)

yt =
(

1 + Φp

Ȳ

)
(αku

t + (1 − α)lt + xa
t ) (65.8)

ku
t − lt =wt − rk

t (65.9)

mct =(1 − α)wt + αrk
t − xa

t (65.10)

yt = 1
1 − gy

(
C̄

Ȳ
ct + Ī

Ȳ
it + R̄kK̄

Ȳ
ut + xg

t

)
(65.11)

rt =ϕrrt−1 + (1 − ϕr) (ϕππt + ϕyyt) + xr
t (65.12)

πt =ξpιpπt−1 + κpξpĒt [mct + xp
t ] + (1 − ξp)(1 − ιpβξp)Ēt [πt]

+ (1 − ξp)βξp

ˆ 1

0
Eit[p∗

i,t+1]di (65.13)

wt + πt =ξw(ιwπt−1 + wt−1) + (1 − ξw)w∗
t (65.14)

w∗
t =(1 − βξw)

1 + χθw

Ēt [mrst + wt + xw
t ] + (1 − ιwβξw)Ēt [πt] + βξp

ˆ 1

0
Eht

[
w∗

h,t+1

]
dh (65.15)

where κp = (1−ξp)(1−βξp)
ξp

, κw = (1−ξw)(1−βξw)
ξw(1+χθw) and θw = 1+µ̄w

µ̄w . Ēt[·] ≡
´ 1

0 Eit[·]di denotes average
expectation, where Eit[·] ≡ E[· | Iit] is agent i’s expectation based on her information set at period
t, Iit.

All equations are standard in macroeconomic models. The first equation is the Euler equation
for consumption, which is derived by combining the log-linearized versions of equations (55) and
(56). The second equation is the equilibrium condition for investment from (58) and the third
determines the marginal real value of a unit of capital qt that come from condition (57). The forth
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is log-linearized version of the usual law of motion of capital (17). The fifth is the log-linearized
version of the optimal condition for capital utilization (59) and the sixth comes from the definition
of utilized capital (19). The seventh and eighth are log-linearized versions of the aggregation
of the marginal rate of substitution between consumption and labor from equation (61) and the
production function (5), respectively. The ninth and tenth comes from aggregating firms’ cost
minimization condition (63) and marginal cost (63), respectively. The eleventh derives from the
aggregate resource constraint (29), while twelfth is the log-linearized version of the Taylor rule (25).
Finally, the thirteenth is the New Keynesian Phillips curve for prices that combines log-linearized
versions of equations (62) and (10). The last equation is the New Keynesian Phillips curve for
wages that combines log-linearized versions of equations (60) and (24).

The derivation of the model can be found in the Online Appendix.

B Data

Data on macroeconomic aggregates are collected from the Federal Reserve Database (FRED) and
expectation data come from the Survey of Professional Forecasters (SPF). The time series collected
to construct the database are displayed in Table 2. It starts in 4Q81, the first quarters with data
for all time series on expectations that I use in this work, and ends in 4Q07, before the Great
Recession.

Table 2: Database

Series Description Measure Source

GDPC1 Real Gross Domestic Product Billions of Chained 2012 Dollars BEA
PCECC96 Real Personal Consumption Expenditures Billions of Chained 2012 Dollars BEA
GPDIC1 Real Gross Private Domestic Investment Billions of Chained 2012 Dollars BEA
GDPDEF Gross Domestic Product: Implicit Price Deflator Index 2012=100 BEA
FF Effective Federal Funds Rate Percentage points FED Board
PRS85006063 Nonfarm Business Sector: Compensation Index 2012=100 BEA
HOANBS Nonfarm Business Sector: Hours of All Persons Index 2012=100 BLS
CNP16OV Civilian Noninstitutional Population Thousands of People BLS
RGDP Forecast for the real GDP Chained Dollars (base year varies) SPF
RCONSUM Forecast for the real PCE Chained Dollars (base year varies) SPF
RNRESINV Forecast for the nonresidential fixed investment Chained Dollars (base year varies) SPF
PGDP Forecast for the GDP price index Index (base year varies) SPF
TBILL Forecast for the annual three-month Treasury bill rate Percentage points SPF

Note: BEA, BLS, Fed Board and SPF stand for, respectively: U.S. Bureau of Economic Analysis, U.S. Bureau of Labor Statistics,

Board of Governors of the Federal Reserve and Survey of Professional Forecasters.

Real output (GDPC1), consumption (PCE) and investment (GDPIC1) are computed as per
capita aggregates by dividing them to the Hodrick-Prescott filtered population index (CNP16OV).
Real wage is constructed by dividing the compensation in the nonfarm business sector (PRS85006063)
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by the GDP deflator (GDPDEF). Per capita total hours is computed by dividing the hours of all
persons out nonfarm business sector (HOANBS) from the smoothed population index. Inflation
is defined as the annualized quarterly growth rate of GDP deflator (GDPDEF). The nominal in-
terest rate is computed by the log of the gross federal funds rate (FF) to be consistent with the
log-linearization procedure.

Y obs
t = GDPC1t/HP (CNP16OVt)

Cobs
t = PCEt/HP (CNP16OVt)

Iobs
t = GPDIC1t/HP (CNP16OVt)

W obs
t = PRS85006063t/GDPDEFt

dyobs
t = 100 log(Y obs

t /Y obs
t−1)

dcobs
t = 100 log(Cobs

t /Cobs
t−1)

diobs
t = 100 log(Iobs

t /Iobs
t−1)

dwobs
t = 100 log(W obs

t /W obs
t−1)

Lobs
t = HOANBSt/HP (CNP16OVt)

Πobs
t = 400 log(GDPDEFt/GDPDEFt−1)

Robs
t = 100 log(1 + FFt/100)

Expectation data are constructed as follows
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Ēt[Y obs
t+1] = RGDP3t/HP (CNP16OVt+1)

Ēt[Y obs
t ] = RGDP2t/HP (CNP16OVt)

Ēt[Cobs
t+1] = RCONSUM3t/HP (CNP16OVt+1)

Ēt[Cobs
t ] = RCONSUM2t/HP (CNP16OVt)

Ēt[Iobs
t+1] = RINV EST3t/HP (CNP16OVt+1)

Ēt[Iobs
t ] = RINV EST32t/HP (CNP16OVt)

Ēt[dyobs
t ] = 100 log

(
Ēt[Y obs

t+1]/Ēt[Y obs
t ]

)
Ēt[dyobs

t ] = 100 log
(
Ēt[Y obs

t ]/Ēt[Y obs
t−1]

)
Ēt[dcobs

t ] = 100 log
(
Ēt[Cobs

t ]/Ēt[Cobs
t−1]

)
Ēt[diobs

t ] = 100 log
(
Ēt[Iobs

t ]/Ēt[Iobs
t−1]

)
Ēt[πobs

t ] = 400 log(PGDP3t/PGDP2t)

Ēt[Robs
t ] = log(1 + TBILL2t/100)

F̄ [dyt] = dyobs
t − Ēt−1[dyobs

t ]

F̄ [dct] = dcobs
t − Ēt−1[dcobs

t ]

F̄ [dit] = diobs
t − Ēt−1[diobs

t ]

F̄ [πt] = πobs
t − Ēt−1[πobs

t ]

F̄ [Rt] = Robs
t − Ēt−1[Robs

t ]

C Alternative datasets, measurement equations and pos-
teriors

The measurement equations from macroeconomic data are the same as the baseline specification
(53). When considering data on forecasts, we consider the following measurement equations

f obs
dy,t = Ēt[∆yt] + εf,me

dy,t

f obs
dc,t = Ēt[∆ct] + εf,me

dc,t

f obs
di,t = Ēt[∆it] + εf,me

di,t

f obs
π,t = 4Ēt[πt] + εf,me

π,t

f obs
r,t = 4Ēt[rt] + εf,me

r,t .
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This measurement equation is from the specification defined as ‘Forecast dataset’, which in-
cludes macroeconomic and forecast data.

When using data on forecast errors, we use measurement equations given by

eobs
dy,t = ∆yt − Ēt−1[∆yt] + εfe,me

dy,t

eobs
dc,t = ∆ct − Ēt−1[∆ct] + εfe,me

dc,t

eobs
di,t = ∆it − Ēt−1[∆it] + εfe,me

di,t

eobs
π,t = 4

(
πt − Ēt−1[πt]

)
+ εfe,me

π,t

eobs
r,t = 4

(
rt − Ēt−1[rt]

)
+ εfe,me

r,t ,

This measurement equation is from the specification defined as ‘Forecast error dataset’, which
includes macroeconomic and forecast error data.

Finally, the specification defined as ‘Macroeconomic only dataset’ uses the first seven equations
from (53).

D Posterior estimates from alternative datasets

E Simulated forecast errors and revisions

In section 5.1, we describe the simulation of forecast errors and revisions for the DI model estimated
for the ‘Forecast revision dataset’. The simulation for estimates for other datasets is analogous,
but has to take into account that they differ in their measurement errors. Here we provide a
description of those differences.

Forecast error dataset. Again, consider the vector of parameters, Θ, that collects all pa-
rameters of the model and the vector of some selected endogenous variables, zt. For a given Θ, we
simulate a nsim samples of those variables and their expectations {zt, Ēt[zt], Ēt−1[zt]} and measure-
ment errors {εme

z,t } for t = 1, · · · , Tsim and z ∈ {dy, dc, di, π, r}. Then, we construct nsim time-series
for average forecast revisions and forecast errors such that

R̄ev
sim

z,t|t−1 = Ēt[zt] − Ēt−1[zt]

F̄ e
sim

z,t−1 = zt − Ēt−1[zt] + εme,fe
z,t

for t = 1, · · · , Tsim and z ∈ {dy, dc, di, π, r}.
Note that the measurement error is now on the forecast error instead of the forecast revision

as in the section 5.1.
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Table 3: Posterior distributions for common parameters in alternative datasets

Dataset: Macroeconomic only Forecast revision Forecast error Forecast
Posterior: Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95%
Endogenous propagation parameters
χ 1.82 1.18 2.74 1.84 0.99 3.04 2.12 1.61 2.76 1.04 0.97 1.12
φ 0.33 0.13 0.54 0.98 0.96 0.99 0.98 0.97 0.99 0.95 0.94 0.96
a′′ 0.31 0.17 0.50 0.46 0.29 0.67 0.43 0.26 0.65 0.66 0.46 0.89
s′′ 5.16 2.52 8.52 12.35 8.78 16.45 16.27 12.47 20.62 11.42 8.54 14.71
ϕy 0.20 0.12 0.29 0.31 0.21 0.42 0.07 0.04 0.12 0.05 0.02 0.08
ϕπ 1.00 0.60 1.48 1.55 0.99 2.18 3.25 2.63 3.99 3.43 2.86 4.13
ϕr 0.71 0.60 0.82 0.92 0.89 0.95 0.89 0.86 0.92 0.80 0.76 0.84
ιp 0.24 0.04 0.70 0.69 0.48 0.80 0.04 0.01 0.09 0.04 0.01 0.08
ιw 0.49 0.16 0.82 0.39 0.12 0.72 0.49 0.17 0.81 0.47 0.15 0.80
ξp 0.98 0.97 1.00 0.98 0.98 0.99 0.88 0.84 0.92 0.69 0.67 0.71
ξw 0.08 0.02 0.17 0.92 0.85 0.96 0.80 0.74 0.85 0.10 0.03 0.18
Steady-state parameters
πss 2.29 1.82 2.71 1.49 1.06 1.96 2.74 2.29 3.20 2.26 1.78 2.76
rss 7.40 6.41 8.43 7.44 6.38 8.57 6.35 5.56 7.21 5.50 4.68 6.34
γss 0.40 0.35 0.45 0.47 0.45 0.50 0.34 0.32 0.37 0.22 0.20 0.25
Structural shocks parameters
ρc 0.89 0.79 0.96 0.13 0.07 0.20 0.24 0.16 0.32 0.36 0.27 0.44
ρi 0.48 0.35 0.61 0.29 0.22 0.35 0.16 0.10 0.21 0.12 0.09 0.15
ρg 0.99 0.97 1.00 0.99 0.98 1.00 0.99 0.98 1.00 1.00 1.00 1.00
ρp 0.54 0.12 0.76 0.10 0.03 0.21 0.83 0.76 0.88 0.91 0.89 0.93
ρw 0.89 0.80 0.96 0.34 0.21 0.48 0.24 0.14 0.34 0.64 0.56 0.72
ρr 0.91 0.80 0.98 0.41 0.29 0.54 0.53 0.43 0.63 0.98 0.96 0.99
ρa 0.96 0.91 0.99 0.998 0.995 0.999 0.90 0.85 0.94 0.96 0.95 0.98
σc 0.13 0.08 0.22 1.72 1.28 2.29 0.32 0.21 0.52 11.98 6.91 18.30
σi 1.72 1.21 2.35 5.65 4.63 6.84 2.09 1.47 3.12 3.31 2.47 4.40
σg 0.53 0.45 0.62 0.50 0.43 0.58 0.57 0.50 0.65 0.57 0.50 0.66
σp 0.11 0.05 0.21 0.39 0.31 0.50 0.09 0.07 0.11 0.12 0.10 0.14
σw 0.62 0.48 0.84 0.91 0.55 1.50 1.54 0.85 2.79 1.36 0.86 2.17
σr 0.12 0.11 0.13 0.12 0.11 0.14 0.13 0.12 0.15 0.16 0.14 0.18
σa 0.42 0.37 0.47 0.44 0.39 0.49 0.41 0.36 0.46 0.42 0.37 0.47
Information friction parameters
k̄c 0.68 0.54 0.82 0.25 0.20 0.31 0.80 0.60 0.95 0.05 0.03 0.08
k̄i 0.84 0.71 0.95 0.40 0.36 0.45 0.81 0.62 0.94 0.61 0.49 0.72
k̄g 0.60 0.48 0.73 0.52 0.49 0.55 0.81 0.71 0.91 0.73 0.70 0.76
k̄p 0.82 0.62 0.96 0.39 0.30 0.47 0.58 0.47 0.70 0.87 0.77 0.95
k̄w 0.79 0.61 0.93 0.68 0.41 0.90 0.46 0.23 0.69 0.38 0.23 0.52
k̄r 0.20 0.07 0.36 0.72 0.63 0.80 0.68 0.59 0.77 0.14 0.12 0.17
k̄a 0.90 0.78 0.97 0.05 0.04 0.07 0.59 0.41 0.80 0.55 0.50 0.61

Forecast dataset. For the ‘Forecast dataset’, we first construct the forecasts with their
own measurement errors and compute the implied forecast error and revision. The forecast is
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Table 4: Prior and Posterior distributions for measurement errors in alternative datasets

Parameters
Prior Posterior

Dist. Mean Std. Dev. Mean 5% 95%
Forecast revision dataset
σme

dy IG 0.1 0.02 0.29 0.26 0.33
σme

dc IG 0.1 0.02 0.21 0.18 0.23
σme

di IG 0.5 0.2 1.22 1.09 1.37
σme

π IG 0.15 0.05 0.45 0.40 0.50
σme

r IG 0.15 0.05 0.25 0.22 0.29
Forecast error dataset
σme,fe

dy IG 0.15 0.05 0.45 0.40 0.51
σme,fe

dc IG 0.15 0.05 0.40 0.36 0.45
σme,fe

di IG 1 0.25 2.19 1.96 2.44
σme,fe

π IG 0.2 0.05 1.12 1.01 1.25
σme,fe

r IG 0.2 0.05 0.23 0.20 0.26
Forecast dataset
σme,f

dy IG 0.1 0.02 0.20 0.18 0.23
σme,f

dc IG 0.1 0.02 0.18 0.16 0.20
σme,f

di IG 0.3 0.05 0.79 0.71 0.88
σme,f

π IG 0.3 0.05 0.46 0.40 0.53
σme,f

r IG 0.7 0.25 0.57 0.49 0.66

constructed as

Ēsim
z,t|t−1 = Ēt−1[zt] + εme,f

z,t

for t = 1, · · · , Tsim and z ∈ {dy, dc, di, π, r}.

R̄ev
sim

z,t|t−1 = Ēt[zt] − Ēsim
z,t|t−1 = Ēt[zt] − Ēt−1[zt] − εme,f

z,t

F̄ e
sim

z,t−1 = zt − Ēsim
z,t|t−1 = zt − Ēt−1[zt] − εme,f

z,t

Note that the measurement error for the one-step ahead forecast, εme,f
z,t , shows up in both

forecast errors and revisions.
For other specifications, measurement errors introduces noise, which does not affect the esti-

mated β from regression 54 but increases its standard deviation. Here, the measurement error
induces a one-to-one relationship that potentially bias the estimate of β. The size of the bias is
likely to depend on the relative importance of the measurement error explaining the forecasts.

The posterior means for measurement error standard deviations are roughly two times higher
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than the prior for all forecasts except for nominal rates (which is less than the prior). This implies
that the measurement error explains a small fraction of total variation of the forecast data (roughly
5% for nominal rates and 10% for others). Simulations without the measurement error leads to
similar point estimates.

F Solution method and Algorithm

We first start with two Lemmas. The first writes the first-order expectation of the hierarchy as a
linear transformation of the hierarchy.

Lemma 1. The first-order expectation of the hierarchy of expectations satisfy

E
(1)
t

[
x

(0:k̄)
t

]
= Tx

(0:k̄)
t (66)

where T =
 0nk̄×n Ink̄

0n×n 0n×nk̄

 is the order transformation matrix.

Proof. By the definition of x(0:k̄)
t one can see that E(1)

t

[
x

(0:k̄)
t

]
= x

(1:k̄+1)
t . By definition for k̄, any

order s such that s > k̄ does not affect the equilibrium. Then, without loss of generality, one can
set E(s)

t [xt] = 0 if s > k̄. Therefore, one can rewrite E(1)
t

[
x

(0:k̄)
t

]
as

E
(1)
t

[
x

(0:k̄)
t

]
=
 x

(1:k̄)
t

E
(k̄+1)
t [xt]

 =
 x

(1:k̄)
t

0n×1

 =
 0nk̄×n Ink̄

0n×n 0n×nk̄

 xt

x
(1:k̄)
t

 = Tx
(0:k̄)
t , (67)

where the first equality uses the definition of x(1:k̄+1)
t and the second equality uses that E(k̄+1)

t [xt] =
0. In the last equality, T is defined accordingly.

This is Lemma builds on Proposition 1 from Online Appendix of Melosi (2017). It explores the
truncation of the hierarchy.

The second Lemma does the opposite: writes the hierarchy as a linear transformation of the
first-order expectation of the hierarchy.

Lemma 2. x(0:k̄)
t can be rewritten as a linear function of xt and its average expectation such that

x
(0:k̄)
t ≡ e′

xxt + T ′E
(1)
t

[
x

(0:k̄)
t

]
,
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Proof. By definition, x(0:k̄)
t can be decomposed as x(0:k̄)

t =
[
x′

t (x(1̄:k̄)
t )′

]′
. Using this decomposition,

the average expectation decomposed as E(1)
t

[
x

(0:k̄)
t

]
=
[
(x(1̄:k̄)

t )′ E
(k̄+1)
t [xt]′

]′
. Therefore, one can

use this two definitions such that

x
(0:k̄)
t ≡

 xt

x
(1̄:k̄)
t

 =
 In

0nk̄×n

xt +
 0n×nk̄ 0n×n

Ink̄ 0nk̄×n

 x
(1:k̄)
t

E
(k̄+1)
t [xt]

 = e′
xxt + T ′E

(1)
t

[
x

(0:k̄)
t

]
,

where last equality uses the definitions of T in Lemma 1 and ex.

Lemmas are taken from Ribeiro (2018, chap. 3).

F.1 Proof of Proposition 1

Individual and average expectations about the hierarchy. The Kalman filter delivers the
individual conditional expectation, Eit [·] ≡ E [·|I i

t ], where I i
t = {si,τ , τ ≤ t} is the information set

of individual i in period t.
The state equation is the hierarchy of expectations that is given by the state equation (42),

restated for convenience:
x

(0:k̄)
t = Ax(0:k̄)

t−1 + Bεt, (68)

and the agent i with the observational equation (39), also restated:

si,t = Cxxt +Dvi,t.

Note that si,t is a signal about the shocks and not the whole hierarchy of expectations.
Let the selection matrix ex ≡

[
In 0n×nk̄

]
such that xt = exx

(0:k̄)
t . Then, we can rewrite the

signal in terms of the hierarchy as

si,t = Cx
(0:k̄)
t +Dvit. (69)

where C = Cxex.
Each agent i uses the Kalman filter and find the update equation given by

Ei,t

[
x

(0:k̄)
t

]
= Ei,t−1

[
x

(0:k̄)
t

]
+ Kt [si,t − Ei,t−1 [si,t]] , (70)

where Kt is the Kalman gain given by

Kt = Pt/t−1C
′
[
CPt/t−1C

′ +DΣvD
′
]−1

. (71)
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As usual, the mean squared error (MSE) of the one-period ahead prediction error is given by

Pt+1/t = A
[
Pt/t−1 − Kt

[
CPt/t−1

]]
A′ + BΣεB′. (72)

For details of this deviation, see for instance Hamilton (1995, chap. 13).
Using the observational equation, (69), taking expectations and inserting in (70) one can find:

Eit

[
x

(0:k̄)
t

]
= Ei,t−1

[
x

(0:k̄)
t

]
+ Kt

[
Cx

(0:k̄)
t +Dvit − CEi,t−1

[
x

(0:k̄)
t

]]
(73)

Therefore, one can rewrite the equation above as

Eit

[
x

(0:k̄)
t

]
= (Ik − KtC)Eit−1

[
x

(0:k̄)
t

]
+ Kt

[
Cx

(0:k̄)
t +Dvit

]
(74)

where k = n(k̄+ 1). Using the fact that Ei,t−1

[
x

(0:k̄)
t

]
= AEi,t−1

[
x

(0:k̄)
t−1

]
and substituting equation

(68), one can find:

Eit

[
x

(0:k̄)
t

]
= (Ik − KtC) AEi,t−1

[
x

(0:k̄)
t−1

]
+ KtCAx(0:k̄)

t−1 + KtCBεt + KtDvit (75)

We follow the literature by focusing in the stationary equilibrium. Therefore, the expectation
of each individual i in the stationary equilibrium is the one which the MSE is in steady-state, i.e.,
agents update their forecast based on the steady-state Kalman gain. In other words, the dynamics
of expectations depends only in the properties of the process they are forecasting and signals, but
do not depend in the period t.

Combining equations (71-72), one can find the Riccatti equation

Pt+1/t = A
[
Pt/t−1 − Pt/t−1C

′
[
CPt/t−1C

′ +DΣvD
′
]−1

CPt/t−1

]
A′ + BΣεB′ (76)

Therefore, one need to iterate this equation to find the steady-state MSE, P̄, and compute
its counterpart Kalman gain, K̄. Nimark (2017) shows that if is xt stationary process, then the
expectations hierarchy about this process, x(0:k̄)

t , is also stationary. This and the fact that Σε is
positive definite, then there exists a steady-state solution such that P̄ = Pt+1|t = Pt|t−1 which
implies the steady-state Kalman gain K̄ = Kt = Kt−1 (see Hamilton; 1995, chap. 13).

Expressions (44) in the Proposition 1 are equations (71-72) using the steady-state Kalman gain,
K̄, instead of K̄t.

Moreover, the average expectation is easily computed by

Ēt

[
x

(0:k̄)
t

]
≡
ˆ 1

0
Eit

[
x

(0:k̄)
t

]
di =

(
Ik − K̄C

)
AĒt−1

[
x

(0:k̄)
t−1

]
+ K̄CAx(0:k̄)

t−1 + K̄CBεt (77)
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Analogously, the individual and average expectation of Proposition 1 are equations (75) and
(77) using the steady-state Kalman gain, K̄, instead of K̄t.

Verify guess for x(0:k̄)
t . In the first part of the proof, we found the average expectation (77) for

the guessed the dynamics of the hierarchy of expectations (68).
Now we verify the guessed hierarchy and find the coefficients (A,B) consistent with the average

expectation.
Substituting the average expectation from equation (77) into the expression from Lemma 2 one

can find that:

x
(0:k̄)
t = e′

xxt + T ′
[(
Ik − K̄C

)
AE(1)

t−1

[
x

(0:k̄)
t−1

]
+ K̄CAx(0:k̄)

t−1 + K̄CBεt

]

Then, using the shocks definition (38) and the fact that xt = exx
(0:k̄)
t one can rewrite equation

above as

x
(0:k̄)
t = e′

x

(
A1exx

(0:k̄)
t−1 + εt

)
+ T ′

(
Ik − K̄C

)
AE

(1)
t−1

[
x

(0:k̄)
t−1

]
+ T ′K̄CAx

(0:k̄)
t−1 + T ′K̄CBεt

Using Lemma 1 at period t− 1 into equation above and rearranging:

x
(0:k̄)
t =

[
e′

xA1ex + T ′
(
Ik − K̄C

)
AT + T ′K̄CA

]
x

(0:k̄)
t−1 +

[
T ′K̄CB + e′

x

]
εt. (78)

This expression shows that the expectations hierarchy is a function of its lag and structural
shocks, as guessed in equation (68). Therefore, the expression above verifies that x(0:k̄)

t follows the
guessed form and the square brackets terms provide identities for A and B in equations (43)

F.2 Proof of Proposition 2

This proof builds on techniques developed by Ribeiro (2018, chap. 3). The key difference is that
we guess a law of motion for individual endogenous variables instead of guessing the aggregate.
This allows recovering expressions for solving for (Q0,Q1) and then get the solution for Q. We
also consider the exogenous information case only.

The guessed law of motion for individual endogenous variables is given (40), restated for con-
venience:

Yi,t = RYi,t−1 + Q0xt + Q1Ei,t

[
x

(0:k̄)
t

]
. (79)
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Aggregating the individual law of motion (79):

Yt = RYt−1 + Q0xt + Q1E
(1)
t

[
x

(0:k̄)
t

]
(80)

= RYt−1 + Q0xt + Q1Tx
(0:k̄)
t (81)

where the last equality uses Lemma 1.
By computing the individual expectation of the endogenous aggregate variables, one can find

that
Eit [Yt] = RYt−1 + Q0Eit [xt] + Q1TEit

[
x

(0:k̄)
t

]
= RYt−1 + (Q0ex + Q1T )Eit

[
x

(0:k̄)
t

]
E

(1)
t [Yt] = RYt−1 + (Q0ex + Q1T )E(1)

t

[
x

(0:k̄)
t

] (82)

where the first equality uses that Yt−1 is known, second equality uses the definition of the selection
matrix, ex, and the third equality aggregates.

Similarly, the individual expectation for endogenous variables in t+ 1:

Eit [Yt+1] = REit [Yt] + Q0Eit [xt+1] + Q1TEit

[
x

(0:k̄)
t+1

]
= REit [Yt] + (Q0A1ex + Q1TA)Eit

[
x

(0:k̄)
t

]
= R2Yt−1 + [R(Q0ex + Q1T ) + (Q0A1ex + Q1TA)]Eit

[
x

(0:k̄)
t

]
E

(1)
t [Yt+1] = R2Yt−1 + [R(Q0ex + Q1T ) + (Q0A1ex + Q1TA)]E(1)

t

[
x

(0:k̄)
t

]
(83)

where the second equality uses equations (38) and (42), and the definition of ex. Third equation
uses equation (82) and the fourth aggregates.

Finally, taking the individual expectation of the law of motion (40) in period t+ 1 implies that

Eit[Yi,t+1] = RYi,t + Q0Eit[xt+1] + Q1Eit

[
Ei,t+1

[
x

(0:k̄)
t+1

]]
= RYi,t + (Q0A1ex + Q1A)Eit

[
x

(0:k̄)
t

]

where the second equality uses the law of iterated expectations (which holds for i’s expectation
but not for the average expectation), equations (38) and (42) as before.
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Aggregating the expectation above leads to
ˆ 1

0
Eit[Yi,t+1]di = RYt + (Q0A1ex + Q1A)E(1)

t [x(0:k̄)
t ]

= R
[
RYt−1 + Q0xt + Q1E

(1)
t

[
x

(0:k̄)
t

]]
+ (Q0A1ex + Q1A)E(1)

t [x(0:k̄)
t ]

= R2Yt−1 + RQ0xt + [RQ1 + (Q0A1ex + Q1A)]E(1)
t [x(0:k̄)

t ]

(84)

where the second equality uses equation (81). Note that
´ 1

0 Eit[Yi,t+1]di ̸= E
(1)
t [Yt+1].

Substituting the guessed solution (81) and the expectations (82-84) into the system of equations
(37) one can find:

F1

[
R2Yt−1 + RQ0xt + [RQ1 + (Q0A1ex + Q1A)]E(1)

t [x(0:k̄)
t ]

]
+

F2

[
R2Yt−1 + [R(Q0ex + Q1T ) + (Q0A1ex + Q1TA)]E(1)

t

[
x

(0:k̄)
t

]]
+

G1

[
RYt−1 + Q0xt + Q1E

(1)
t

[
x

(0:k̄)
t

]]
+G2

[
RYt−1 + (Q0ex + Q1T )E(1)

t

[
x

(0:k̄)
t

]]
+

HYt−1 + [(L1A1 + L2)] exE
(1)
t

[
x

(0:k̄)
t

]
+M1xt = 0m×1

which can be rearranged to
[
FR2 +GR +H

]
Yt−1 + [(F1R +G1) Q0 +M1]xt

[F1 [RQ1 + (Q0A1ex + Q1A)] + F2 [R(Q0ex + Q1T ) + (Q0A1ex + Q1TA)] +

G1Q1 +G2(Q0ex + Q1T ) + (L1A1 + L2 +M)ex]E(1)
t

[
x

(0:k̄)
t

]
= 0m×1

which can be simplified to
[
FR2 +GR +H

]
Yt−1 + [[F1R +G1] Q0 +M1]xt+

[[F1R +G1] Q1 + F1Q1A + (F2R +G2)Q1T + F2Q1TA

[(F2R +G2)Q0 + (F1 + F2)Q0A1 + (L1A1 + L2)] ex]E(1)
t

[
x

(0:k̄)
t

]
= 0m×1

This condition must hold for all realizations of Yt−1, xt and E(1)
t

[
x

(0:k̄)
t

]
. Therefore, all coefficients
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between square brackets must be zero, which leads to

FR2 +GR +H = 0m×m

[F1R +G1] Q0 +M1 = 0m×n

[F1R +G1] Q1 + F1Q1A + (F2R +G2)Q1T + F2Q1TA

[(F2R +G2)Q0 + FQ0A1 + (LA1 +M2)] ex = 0m×k

which leads to the same equations from Proposition 2. R can be solved using Uhlig (2001) method.
For a given solution of R, Q0 and Q1 can be solved by straightforward vectorization as discussed
in the Proposition.

F.3 Algorithm

Algorithm. Set the initial values (A(0),B(0)), a small tolerance ϵ > 0 and set i = 1. Then,
follow the steps:

1. Given A = A(i−1) and B(i−1), compute K̄ and P̄ using equations (44) using standard solver
for Ricatti equations. Set K̄(i) = K̄ and P̄(i) = P̄.

2. Given A(i−1) and K̄(i), compute the right hand side of equations (43) and solve for B and A
the equations by matrix inversion. Set B(i) = B, A(i) = A.

3. If max
{
||B(i) − B(i−1)||, ||A(i) − A(i−1)||, ||P(i) − P(i−1)||

}
< ϵ, stop iterating. Otherwise, set

i = i+ 1 and go back to step 1.

Given the solution for A, one can use standard techniques for solving for (R,Q0,Q1,Q) using
Proposition 2.

G Impulse response functions

In this section, the remaining impulse responses for the FI and ICK models estimated with the
dataset including expectation data are displayed.
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Figure 11: Impulse responses to preference shock
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Figure 12: Impulse responses to TFP shock
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Figure 13: Impulse responses to wage mark-up shock
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Figure 14: Impulse responses to price mark-up shock
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Figure 15: Impulse responses to government expenditure shock
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